We present a unified framework for deriving PAC-Bayesian generalization bounds. Unlike most previous literature on this topic, our bounds are anytime-valid (i.e., time-uniform), meaning that they hold at all stopping times, not only for a fixed sample size. Our approach combines four tools in the following order: (a) nonnegative supermartingales or reverse submartingales, (b) the method of mixtures, (c) the Donsker-Varadhan formula (or other convex duality principles), and (d) Ville's inequality. We derive time-uniform generalizations of well-known classical PAC-Bayes bounds, such as those of Seeger, McAllester, Maurer, and Catoni, in addition to many recent bounds. We also present several novel bounds and, more importantly, general techniques for constructing them. Despite being anytime-valid, our extensions remain as tight as their fixed-time counterparts. Moreover, they enable us to relax traditional assumptions; in particular, we consider nonstationary loss functions and non-i.i.d. data. In sum, we unify the derivation of past bounds and ease the search for future bounds: one may simply check if our supermartingale or submartingale conditions are met and, if so, be guaranteed a (time-uniform) PAC-Bayes bound.
翻译:我们提出了一个用于得出PAC-Bayesian通用框架的统一框架。 与大多数以前关于这个主题的文献不同, 我们的界限是随时有效的( 即时间统一), 意味着它们在所有停留时间都保持, 不仅仅是固定的样本大小。 我们的方法包括四个工具, 顺序如下:(a) 不偏向的上层悬界或反向子界, (b) 混合物的方法, (c) Donsker- Varadhan 公式( 或其他相似的双重性原则), (d) Ville的不平等性。 我们对众所周知的古典PAC- Bayes 界限( 如Seeger、 McAllester、 Maurer 和 Catoni 等) 得出时间一致的概括性通用。 除了许多最近的界限外, 我们的方法还包括四个工具:(a) 新的界限, 更重要的是, (b) 建造它们的一般技术。 (c) 尽管是暂时有效的, 我们的延长期限仍然很紧紧紧, (或其他相似的双重原则 ) 和 (d) Ville's 不平等的假设。 (我们特别认为非静止损失功能和不统一的搜索 和不拘束式的 可能成为最终的固定的 的 。 (bild) (bild) 的 ) (bild) (c) (bild) (bilved) (bild) (bild) (bild) (bild) ) ) (我们的搜索的搜索的搜索的 ) (bild) (bild)