We propose a novel type of map for visual navigation, a renderable neural radiance map (RNR-Map), which is designed to contain the overall visual information of a 3D environment. The RNR-Map has a grid form and consists of latent codes at each pixel. These latent codes are embedded from image observations, and can be converted to the neural radiance field which enables image rendering given a camera pose. The recorded latent codes implicitly contain visual information about the environment, which makes the RNR-Map visually descriptive. This visual information in RNR-Map can be a useful guideline for visual localization and navigation. We develop localization and navigation frameworks that can effectively utilize the RNR-Map. We evaluate the proposed frameworks on camera tracking, visual localization, and image-goal navigation. Experimental results show that the RNR-Map-based localization framework can find the target location based on a single query image with fast speed and competitive accuracy compared to other baselines. Also, this localization framework is robust to environmental changes, and even finds the most visually similar places when a query image from a different environment is given. The proposed navigation framework outperforms the existing image-goal navigation methods in difficult scenarios, under odometry and actuation noises. The navigation framework shows 65.7% success rate in curved scenarios of the NRNS dataset, which is an improvement of 18.6% over the current state-of-the-art. Project page: https://rllab-snu.github.io/projects/RNR-Map/
翻译:我们提出了一种新型的视觉导航地图,称为可渲染的神经辐射图(RNR-Map),旨在包含3D环境的整体视觉信息。RNR-Map具有网格形式,并由每个像素处的潜在编码组成。这些潜在编码是从图像观察中嵌入的,并且可以转换为神经辐射场,从而在给定摄像机姿势的情况下实现图像渲染。记录的潜在编码隐含着有关环境的视觉信息,使RNR-Map具有视觉描述能力。 RNR-Map中的这些视觉信息可以作为视觉定位和导航的有用指南。我们开发了能够有效利用RNR-Map的定位和导航框架。我们对基于RNR-Map的定位框架进行了评估,包括相机跟踪、视觉定位和图像-目标导航。实验结果表明,与其他基线相比,基于RNR-Map的定位框架可以基于单个查询图像快速准确地找到目标位置。此外,当给定来自不同环境的查询图像时,该定位框架对环境变化具有鲁棒性,并且甚至可以找到最相似的位置。所提出的导航框架在困难场景下的表现优于现有的图像-目标导航方法,而且还考虑了里程计和执行噪声。导航框架在NRNS数据集的曲线场景中的成功率达到了65.7%,是当前最先进水平的改进18.6%。项目页面:https://rllab-snu.github.io/projects/RNR-Map/