Numerous knowledge workers utilize spreadsheets in business, accounting, and finance. However, a lack of systematic documentation methods for spreadsheets hinders automation, collaboration, and knowledge transfer, which risks the loss of crucial institutional knowledge. This paper introduces Spreadsheet Operations Documentation (SOD), an AI task that involves generating human-readable explanations from spreadsheet operations. Many previous studies have utilized Large Language Models (LLMs) for generating spreadsheet manipulation code; however, translating that code into natural language for SOD is a less-explored area. To address this, we present a benchmark of 111 spreadsheet manipulation code snippets, each paired with a corresponding natural language summary. We evaluate five LLMs, GPT-4o, GPT-4o-mini, LLaMA-3.3-70B, Mixtral-8x7B, and Gemma2-9B, using BLEU, GLEU, ROUGE-L, and METEOR metrics. Our findings suggest that LLMs can generate accurate spreadsheet documentation, making SOD a feasible prerequisite step toward enhancing reproducibility, maintainability, and collaborative workflows in spreadsheets, although there are challenges that need to be addressed.
翻译:暂无翻译