Proof autoformalization, the task of translating natural language theorems and proofs into machine-verifiable code, is a critical step for integrating large language models into rigorous mathematical workflows. Current approaches focus on producing executable code, but they frequently fail to preserve the semantic meaning and logical structure of the original human-written argument. To address this, we introduce ProofFlow, a novel pipeline that treats structural fidelity as a primary objective. ProofFlow first constructs a directed acyclic graph (DAG) to map the logical dependencies between proof steps. Then, it employs a novel lemma-based approach to systematically formalize each step as an intermediate lemma, preserving the logical structure of the original argument. To facilitate evaluation, we present a new benchmark of 184 undergraduate-level problems, manually annotated with step-by-step solutions and logical dependency graphs, and introduce ProofScore, a new composite metric to evaluate syntactic correctness, semantic faithfulness, and structural fidelity. Experimental results show our pipeline sets a new state-of-the-art for autoformalization, achieving a ProofScore of 0.545, substantially exceeding baselines like full-proof formalization (0.123), which processes the entire proof at once, and step-proof formalization (0.072), which handles each step independently. Our pipeline, benchmark, and score metric are open-sourced to encourage further progress at https://github.com/Huawei-AI4Math/ProofFlow.
翻译:暂无翻译