In this article, we describe a {\tt R} package for sampling from an empirical likelihood-based posterior using a Hamiltonian Monte Carlo method. Empirical likelihood-based methodologies have been used in Bayesian modeling of many problems of interest in recent times. This semiparametric procedure can easily combine the flexibility of a non-parametric distribution estimator together with the interpretability of a parametric model. The model is specified by estimating equations-based constraints. Drawing an inference from a Bayesian empirical likelihood (BayesEL) posterior is challenging. The likelihood is computed numerically, so no closed expression of the posterior exists. Moreover, for any sample of finite size, the support of the likelihood is non-convex, which hinders the fast mixing of many Markov Chain Monte Carlo (MCMC) procedures. It has been recently shown that using the properties of the gradient of log empirical likelihood, one can devise an efficient Hamiltonian Monte Carlo (HMC) algorithm to sample from a BayesEL posterior. The package requires the user to specify only the estimating equations, the prior, and their respective gradients. An MCMC sample drawn from the BayesEL posterior of the parameters, with various details required by the user is obtained.
翻译:在本篇文章中,我们用汉密尔顿·蒙特卡洛方法描述一个用于从实验性可能性的后背体取样的千兆R}包包,用于使用一种基于实验性可能性的后背体取样。在近些年来,贝叶斯模拟许多令人感兴趣的问题时,采用了基于经验可能性的方法。这种半参数程序很容易将非参数分布估计器的灵活性与参数模型的可解释性结合起来。该模型通过基于方程的限制因素估算而具体化。从巴伊西亚经验可能性(BayesEL)后背体推断出一种有效的汉密尔顿-蒙特卡洛(HMIC)算法具有挑战性。这一可能性是用数字方法计算的,因此没有封闭的海报表达方式存在。此外,对于任何有限规模的样本,这种可能性的支持是非电解码,这妨碍了许多Markov链蒙特卡洛(MC)程序的快速混合。最近已经表明,使用日志概率梯度的特性,可以设计一种高效的汉密尔顿-蒙特卡洛(HMC)算法,从BayesEL posior取样。该软件要求用户仅具体说明、以前和各自的海深层参数。