We investigate the power iteration algorithm for the tensor PCA model introduced in Richard and Montanari (2014). Previous work studying the properties of tensor power iteration is either limited to a constant number of iterations, or requires a non-trivial data-independent initialization. In this paper, we move beyond these limitations and analyze the dynamics of randomly initialized tensor power iteration up to polynomially many steps. Our contributions are threefold: First, we establish sharp bounds on the number of iterations required for power method to converge to the planted signal, for a broad range of the signal-to-noise ratios. Second, our analysis reveals that the actual algorithmic threshold for power iteration is smaller than the one conjectured in literature by a polylog(n) factor, where n is the ambient dimension. Finally, we propose a simple and effective stopping criterion for power iteration, which provably outputs a solution that is highly correlated with the true signal. Extensive numerical experiments verify our theoretical results.
翻译:暂无翻译