Traffic forecasting is challenging due to dynamic and complicated spatial-temporal dependencies. However, existing methods still suffer from two critical limitations. Firstly, many approaches typically utilize static pre-defined or adaptively learned spatial graphs to capture dynamic spatial-temporal dependencies in the traffic system, which limits the flexibility and only captures shared patterns for the whole time, thus leading to sub-optimal performance. In addition, most approaches individually and independently consider the absolute error between ground truth and predictions at each time step, which fails to maintain the global properties and statistics of time series as a whole and results in trend discrepancy between ground truth and predictions. To this end, in this paper, we propose a Dynamic Adaptive and Adversarial Graph Convolutional Network (DAAGCN), which combines Graph Convolution Networks (GCNs) with Generative Adversarial Networks (GANs) for traffic forecasting. Specifically, DAAGCN leverages a universal paradigm with a gate module to integrate time-varying embeddings with node embeddings to generate dynamic adaptive graphs for inferring spatial-temporal dependencies at each time step. Then, two discriminators are designed to maintain the consistency of the global properties and statistics of predicted time series with ground truth at the sequence and graph levels. Extensive experiments on four benchmark datasets manifest that DAAGCN outperforms the state-of-the-art by average 5.05%, 3.80%, and 5.27%, in terms of MAE, RMSE, and MAPE, meanwhile, speeds up convergence up to 9 times. Code is available at https://github.com/juyongjiang/DAAGCN.
翻译:由于动态和复杂的时空依赖性,交通量预测具有挑战性,但是,现有方法仍然有两大局限性。首先,许多方法通常使用静态的预设或适应性学习的空间图形,以捕捉交通系统动态的空间时空依赖性,这限制了灵活性,只捕捉整个时间的共享模式,从而导致业绩不理想。此外,大多数方法个别和独立地考虑地面真相和每次预测之间的绝对错误,这未能维持整个时间序列的全球属性和统计,导致地面事实和预测之间的趋势差异。为此,许多方法通常使用静态的预设或适应性学习的空间图形图,以捕捉摸交通系统动态空间-时间依赖性空间-事实和预测性空间-事实;为此,我们提议建立一个动态的适应性和反变异性图像变异性变异性动态网络(DAGCN),将GAGCN利用一个通用的模型,将时间变换的嵌入和错误嵌入生成动态的图像-CN-3的轨迹-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-时间轴-