Modelling prosody variation is critical for synthesizing natural and expressive speech in end-to-end text-to-speech (TTS) systems. In this paper, a cross-utterance conditional VAE (CUC-VAE) is proposed to estimate a posterior probability distribution of the latent prosody features for each phoneme by conditioning on acoustic features, speaker information, and text features obtained from both past and future sentences. At inference time, instead of the standard Gaussian distribution used by VAE, CUC-VAE allows sampling from an utterance-specific prior distribution conditioned on cross-utterance information, which allows the prosody features generated by the TTS system to be related to the context and is more similar to how humans naturally produce prosody. The performance of CUC-VAE is evaluated via a qualitative listening test for naturalness, intelligibility and quantitative measurements, including word error rates and the standard deviation of prosody attributes. Experimental results on LJ-Speech and LibriTTS data show that the proposed CUC-VAE TTS system improves naturalness and prosody diversity with clear margins.
翻译:模拟假肢变异对于在终端到终端文本到语音(TTS)系统中合成自然和表达式语音(TTS)系统至关重要。本文件建议采用跨接通性条件VAE(CUC-VAE)来根据声学特征、语音信息以及从过去和将来的句子中获得的文字特征来估计每个电话线上潜在假肢特征的外缘概率分布。推断时间,而不是VAE所使用的标准高斯分布,CUC-VAE允许根据跨接通性信息从特定发音前的发音样本取样,这可以使TTS系统生成的亲接性特征与上下文相关,更类似于人类自然产生外观性能的方式。CUC-VAE的性能通过自然性能、智能和定量测量质量听觉测试,包括单词错误率和质谱特性的标准偏差,评估CUC-Speech和LiriTS的实验结果显示,拟议的CPI-VATS系统与清晰性差分系统改进了自然和透明性。