Spoken Language Understanding (SLU), a core component of the task-oriented dialogue system, expects a shorter inference facing the impatience of human users. Existing work increases inference speed by designing non-autoregressive models for single-turn SLU tasks but fails to apply to multi-turn SLU in confronting the dialogue history. The intuitive idea is to concatenate all historical utterances and utilize the non-autoregressive models directly. However, this approach seriously misses the salient historical information and suffers from the uncoordinated-slot problems. To overcome those shortcomings, we propose a novel model for multi-turn SLU named Salient History Attention with Layer-Refined Transformer (SHA-LRT), which composes of an SHA module, a Layer-Refined Mechanism (LRM), and a Slot Label Generation (SLG) task. SHA captures salient historical information for the current dialogue from both historical utterances and results via a well-designed history-attention mechanism. LRM predicts preliminary SLU results from Transformer's middle states and utilizes them to guide the final prediction, and SLG obtains the sequential dependency information for the non-autoregressive encoder. Experiments on public datasets indicate that our model significantly improves multi-turn SLU performance (17.5% on Overall) with accelerating (nearly 15 times) the inference process over the state-of-the-art baseline as well as effective on the single-turn SLU tasks.
翻译:语言语言理解(SLU)是面向任务的对话系统的核心组成部分,它预计人类用户的不耐烦情绪将面临较短的推论。现有工作通过设计单向 SLU 任务的非不反向模式而提高推论速度,但未能适用于多向 SLU 对抗对话历史的 SLU 。直观的想法是将所有历史言论统合起来,直接利用非反向模式。然而,这一方法严重忽略了突出的历史信息,并受到不协调的历史问题的影响。为了克服这些缺陷,我们提出了一个名为“双向 SLU ” 的多向 SLU 创新模型, 名为“双向历史关注” 和“双向 SHA-LRT ” (SHA-LRT),它组成了 SHA模块、 双向机制(LRMM) 和 Slott Label Page (SLG) 任务。 SHA 将当前对话的突出历史信息信息从历史言论和结果通过精心设计的历史保存历史机制获得。LRM预测初步 SLUUUUE 的结果来自变换式的变动的Sder Biral-LA(S-L) IM) 15号中的数据周期的快速分析,并使用它们作为对等最终的图像的快速数据定位,以引导。