Although many near-Earth objects have been found by ground-based telescopes, some fast-moving ones, especially those near detection limits, have been missed by observatories. We developed a convolutional neural network for detecting faint fast-moving near-Earth objects. It was trained with artificial streaks generated from simulations and was able to find these asteroid streaks with an accuracy of 98.7% and a false positive rate of 0.02% on simulated data. This program was used to search image data from the Zwicky Transient Facility (ZTF) in four nights in 2019, and it identified six previously undiscovered asteroids. The visual magnitudes of our detections range from ~19.0 - 20.3 and motion rates range from ~6.8 - 24 deg/day, which is very faint compared to other ZTF detections moving at similar motion rates. Our asteroids are also ~1 - 51 m diameter in size and ~5 - 60 lunar distances away at close approach, assuming their albedo values follow the albedo distribution function of known asteroids. The use of a purely simulated dataset to train our model enables the program to gain sensitivity in detecting faint and fast-moving objects while still being able to recover nearly all discoveries made by previously designed neural networks which used real detections to train neural networks. Our approach can be adopted by any observatory for detecting fast-moving asteroid streaks.
翻译:尽管地面望远镜发现了许多近地物体,但地面望远镜却发现了许多近地物体,一些快速移动的天体,特别是接近探测极限的天体,却被天文台错过。我们开发了一个用于探测微弱快速移动的近地物体的进化神经网络,通过模拟生成的人工痕量进行了培训,并找到了这些小行星的痕量,精确度为98.7%,模拟数据中误差正率为0.02%。这个程序用于在2019年的四晚内搜索Zwicky Transient 设施(ZTF)的图像数据,并确定了6个先前未发现的小行星。我们探测的视觉神经神经网络的视觉数量范围从~19.0-20.3到运动速度从~6.8 - 24度/天不等,与以类似运动速度移动速度移动的其他小行星探测速度相比,这些小行星的体积非常弱。我们的小行星在近处还存在~1-51米直径直径和~5-60月圆距离,假设它们的超地体值跟随已知小行星的反射线体分布函数分布功能分布功能。使用一个纯模的观测轨道的轨道网络,同时利用了我们以前用来测量测测测测测测测测测测的轨道的轨道上的轨道上的轨道上的轨道轨道,因此,利用了所有测测测算了所有测测的轨道上的轨道上的轨道上的轨道上的轨道上的轨道上的轨道轨图图图图图。