Anthropomorphic robot avatars present a conceptually novel approach to remote affective communication, allowing people across the world a wider specter of emotional and social exchanges over traditional 2D and 3D image data. However, there are several limitations of current telepresence robots, such as the high weight, complexity of the system that prevents its fast deployment, and the limited workspace of the avatars mounted on either static or wheeled mobile platforms. In this paper, we present a novel concept of telecommunication through a robot avatar based on an anthropomorphic swarm of drones; SwarMan. The developed system consists of nine nanocopters controlled remotely by the operator through a gesture recognition interface. SwarMan allows operators to communicate by directly following their motions and by recognizing one of the prerecorded emotional patterns, thus rendering the captured emotion as illumination on the drones. The LSTM MediaPipe network was trained on a collected dataset of 600 short videos with five emotional gestures. The accuracy of achieved emotion recognition was 97% on the test dataset. As communication through the swarm avatar significantly changes the visual appearance of the operator, we investigated the ability of the users to recognize and respond to emotions performed by the swarm of drones. The experimental results revealed a high consistency between the users in rating emotions. Additionally, users indicated low physical demand (2.25 on the Likert scale) and were satisfied with their performance (1.38 on the Likert scale) when communicating by the SwarMan interface.


翻译:对远程感知通信而言,我们提出了一种新颖的概念,即通过机器人变异的无人机群进行远程感知通信,让全世界人民对传统的 2D 和 3D 图像数据有更广泛的情感和社会交流的幽灵。然而,目前远程存在的机器人存在若干局限性,例如,妨碍其快速部署的系统重量高,系统复杂,以及静态或轮式移动平台上安装的动画机工作空间有限。在本文中,我们提出了一个新颖的概念,即通过机器人变异的无人机群进行远程感知通信,让全世界人民能够对传统的 2D 和 3D 图像数据进行更广泛的情感和社会交流。但是,SwarMan允许操作者通过直接跟踪其动作和识别一个预录的情感模式来进行交流,从而使所捕捉到的情感成为无人机体的污点。LSTM MediaPipe网络在收集的600个短片数据集上进行了培训,其中含有5种情感姿态。测试数据集的准确度为97 % 测试数据集中,操作者通过动作识别系统识别系统显示其感官反应能力,在Swartalal imal lax labe lab lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年11月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员