The notion of generalized rank invariant in the context of multiparameter persistence has become an important ingredient for defining interesting homological structures such as generalized persistence diagrams. Naturally, computing these rank invariants efficiently is a prelude to computing any of these derived structures efficiently. We show that the generalized rank invariant over a finite interval $I$ of a $\mathbb{Z}^2$-indexed persistence module $M$ is equal to the generalized rank invariant of the zigzag module that is induced on the boundary of $I$. Hence, we can compute the generalized rank over $I$ by computing the barcode of the zigzag module obtained by restricting the bifiltration inducing $M$ to the boundary of $I$. If $I$ has $t$ points, this computation takes $O(t^\omega)$ time where $\omega\in[2,2.373)$ is the exponent for matrix multiplication. Among others, we apply this result to obtain an improved algorithm for the following problem. Given a bifiltration inducing a module $M$, determine whether $M$ is interval decomposable and, if so, compute all intervals supporting its summands. Our algorithm runs in time $O(t^{2\omega})$ vastly improving upon existing algorithms for the problem.
翻译:在多参数持久性的背景下,通用等级不变的概念已成为界定有趣的同质结构(如通用持久性图表)的一个重要要素。自然,高效计算这些等级异差是高效计算任何这些衍生结构的前奏。我们表明,在一定间隔内,通用等级异差为美元=美元=2美元,指数化持久性模块美元=2美元=2美元=2美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=2美元=2美元=2美元=2美元=2美元=2美元=2美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=2美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=