In this paper, I consider a fine-grained dichotomy of Boolean counting constraint satisfaction problem (#CSP), under the exponential time hypothesis of counting version (#ETH). Suppose $\mathscr{F}$ is a finite set of algebraic complex-valued functions defined on Boolean domain. When $\mathscr{F}$ is a subset of either two special function sets, I prove that #CSP($\mathscr{F}$) is polynomial-time solvable, otherwise it can not be computed in sub-exponential time unless #ETH fails. I also improve the result by proving the same dichotomy holds for #CSP with bounded degree (every variable appears at most constant constraints), even for #R$_3$-CSP. An important preparation before proving the result is to argue that pinning (two special unary functions $[1,0]$ and $[0,1]$ are used to reduce arity) can also keep the sub-exponential lower bound of a Boolean #CSP problem. I discuss this issue by utilizing some common methods in proving #P-hardness of counting problems. The proof illustrates the internal correlation among these commonly used methods.
翻译:在本文中, 我考虑在计算版本( # ETH) 的指数时间假设下, 布列因计算限制满意度问题( # CSP) 的细微二分法 。 如果 $\ mathscr{F} $ 是布列恩域定义的一套有限的代数复杂价值的功能。 当$\ mathscr{F}$ 是两个特殊功能集的子集时, 我证明 # CSP ($\ mathscr{F}$) 是多元时间的软性, 否则它不能在分量时间计算, 除非 # ETH 失败 。 我通过证明# CSP 具有约束性( 每个变量在最经常的限制下出现) 的同一二分法来改进结果 。 在证明结果之前的一个重要准备是, 匹配( 两个特殊的单项功能$ $ $ $ $ 和 $ $ $ $ $ $ $ $ $ $ 和 $ $ $ $ $ $ $ $ $ 0, 1, $ $ 美元 ) 也可以维持 的子分解度的亚增度, 除非在亚增量时间里度的次限内段内, 除非 # CSP 问题中计算。 我用这些共同的方法来证明这些内部问题。