Convergence (virtual) bidding is an important part of two-settlement electric power markets as it can effectively reduce discrepancies between the day-ahead and real-time markets. Consequently, there is extensive research into the bidding strategies of virtual participants aiming to obtain optimal bids to submit to the day-ahead market. In this paper, we introduce a price-based general stochastic optimization framework to obtain optimal convergence bid curves. Within this framework, we develop a computationally tractable linear programming-based optimization model, which produces bid prices and volumes simultaneously. We also show that different approximations and simplifications in the general model lead naturally to state-of-the-art convergence bidding approaches, such as self-scheduling and opportunistic approaches. Our general framework also provides a straightforward way to compare the performance of these models, which is demonstrated by numerical experiments on the California (CAISO) market.
翻译:联合(虚拟)投标是两地电力市场的一个重要部分,因为它能够有效减少日间市场和实时市场之间的差异,因此,对虚拟参与者的投标战略进行了广泛的研究,目的是获得向日间市场提交的最佳投标;在本文中,我们采用了基于价格的一般随机优化框架,以获得最佳的趋同投标曲线;在此框架内,我们开发了可计算、可移动的线性编程优化模型,该模型同时产生出价和数量;我们还表明,一般模型的不同近似和简化自然导致最先进的趋同投标方法,例如自我排期和机会主义方法;我们的总框架也提供了比较这些模型业绩的直截了当的方法,加利福尼亚(CAISO)市场的数字实验证明了这一点。