Orthogonality constraints naturally appear in many machine learning problems, from Principal Components Analysis to robust neural network training. They are usually solved using Riemannian optimization algorithms, which minimize the objective function while enforcing the constraint. However, enforcing the orthogonality constraint can be the most time-consuming operation in such algorithms. Recently, Ablin & Peyr\'e (2022) proposed the Landing algorithm, a method with cheap iterations that does not enforce the orthogonality constraint but is attracted towards the manifold in a smooth manner. In this article, we provide new practical and theoretical developments for the landing algorithm. First, the method is extended to the Stiefel manifold, the set of rectangular orthogonal matrices. We also consider stochastic and variance reduction algorithms when the cost function is an average of many functions. We demonstrate that all these methods have the same rate of convergence as their Riemannian counterparts that exactly enforce the constraint. Finally, our experiments demonstrate the promise of our approach to an array of machine-learning problems that involve orthogonality constraints.
翻译:无法实现的确定性、随机性和方差缩减算法在正交约束下的优化
翻译后的摘要:
正交约束在许多机器学习问题中自然出现,从主成分分析到健壮的神经网络训练。通常使用 Riemannian 优化算法来解决这些问题,该算法在强制施加约束的同时最小化目标函数。然而,强制执行正交性约束可能是此类算法中耗时最长的操作。最近,Ablin & Peyr\'e (2022) 提出了 Landing 算法,一种具有廉价迭代的方法,不强制施加正交性约束,但以平滑的方式吸引向流形。在本文中,我们针对 Landing 算法提供了新的实践和理论发展。首先,将该方法扩展到 Stiefel 流形,即矩形正交矩阵的集合上。我们还考虑了在代价函数是许多函数的平均值时的随机性和方差缩减算法。我们证明了所有这些方法都具有与精确执行约束的 Riemannian 同类算法相同的收敛速率。最后,我们的实验证明了我们的方法在涉及正交约束的一系列机器学习问题中的优势。