We consider a PDE approach to numerically solving the optimal transportation problem on the sphere. We focus on both the traditional squared geodesic cost and a logarithmic cost, which arises in the reflector antenna design problem. At each point on the sphere, we replace the surface PDE with a generalized Monge-Amp\`ere type equation posed on the tangent plane using normal coordinates. The resulting nonlinear PDE can then be approximated by any consistent, monotone scheme for generalized Monge-Amp\`ere type equations on the plane. Existing techniques for proving convergence do not immediately apply because the PDE lacks both a comparison principle and a unique solution, which makes it difficult to produce a stable, well-posed scheme. By augmenting this discretization with an additional term that constrains the solution gradient, we obtain a strong form of stability. A modification of the Barles-Souganidis convergence framework then establishes convergence to the mean-zero solution of the original PDE.


翻译:我们考虑用PDE方法从数字上解决球体上的最佳运输问题。 我们既关注传统的平方大地测量成本,也关注反射天线设计问题中产生的对数成本。 在球体上的每一点,我们用正常坐标在正切平面上以通用的蒙古-安普-安普-盖尔方程式取代表面PDE。由此产生的非线性PDE可以被飞机上通用蒙古-安普-安培-埃雷方程式的任何一致的单调方案所近似。 现有的证明趋同技术并不立即适用, 因为 PDE既缺乏比较原则,也缺乏独特的解决办法,因此难以产生稳定、良好的方案。 通过增加限制溶性梯度的附加术语,我们获得了一种强大的稳定性。 修改巴列斯-苏格尼迪斯的趋同框架之后, 就可以与原PDE的平均值- 零解决方案取得趋同。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员