We consider the problem of learning stabilizer states with noise in the Probably Approximately Correct (PAC) framework of Aaronson (2007) for learning quantum states. In the noiseless setting, an algorithm for this problem was recently given by Rocchetto (2018), but the noisy case was left open. Motivated by approaches to noise tolerance from classical learning theory, we introduce the Statistical Query (SQ) model for PAC-learning quantum states, and prove that algorithms in this model are indeed resilient to common forms of noise, including classification and depolarizing noise. We prove an exponential lower bound on learning stabilizer states in the SQ model. Even outside the SQ model, we prove that learning stabilizer states with noise is in general as hard as Learning Parity with Noise (LPN) using classical examples. Our results position the problem of learning stabilizer states as a natural quantum analogue of the classical problem of learning parities: easy in the noiseless setting, but seemingly intractable even with simple forms of noise.


翻译:我们在亚伦森(2007年)的“大概正确”框架内考虑学习稳定状态的问题,在亚伦森(2007年)的“大概正确”框架内,学习量子状态有噪音。在无噪音环境下,罗切托(2018年)最近给出了这个问题的算法,但这个吵闹的个案却被搁置。我们从古典学习理论的噪音容忍方法出发,为PAC学习量子状态引入了统计查询(SQ)模型,并证明这一模型的算法确实适应常见的噪音形式,包括分类和分解噪音。我们证明,在SQ模型中学习稳定状态的指数比SQ模型的指数要快得多。即便在SQ模型之外,我们也证明学习稳定状态与噪音平等一样困难。我们的结果将学习稳定状态的问题定位为典型学习等同的典型量子问题:在无噪音环境中很容易找到,但即使使用简单的噪音形式也看似棘手。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
专知会员服务
115+阅读 · 2019年12月24日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Linear Systems can be Hard to Learn
Arxiv
0+阅读 · 2021年4月2日
Arxiv
0+阅读 · 2021年4月1日
Arxiv
0+阅读 · 2021年3月31日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
专知会员服务
115+阅读 · 2019年12月24日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员