A Barker sequence is a binary sequence for which all nontrivial aperiodic autocorrelations are either 0, 1 or -1. The only known Barker sequences have length 2, 3, 4, 5, 7, 11 or 13. It is an old conjecture that no longer Barker sequences exist and in fact, there is an overwhelming evidence for this conjecture. For binary sequences of odd length, this conjecture is known to be true, whereas for even length it is still open, whether a Barker sequence of even length greater 4 exists. Similar to the well-known fact that a Barker sequence of odd length is necessarily skew-symmetric, we show that in the case of even length there is also a form of symmetry albeit weaker. In order to exploit this symmetry, we derive different formulas for the calculation of the aperiodic correlation. We prove by using only elementary methods that there is no Barker sequence of even length n>4 with $C_{1}=C_{3}=\cdots=C_{\frac{n}{2}-1}$, where $C_{k}$ denotes the $k$th aperiodic autocorrelation of the sequence.
翻译:barker 序列是一个二进制序列, 其所有的非周期性自动对数序列都是 0、 1 或 - 1。 已知的唯一Barker 序列的长度为 2、 3、4、 5、 7、 11 或 13. 这是一种老的推测, 不再存在 Barker 序列, 事实上, 已经有关于这一推测的压倒性证据。 对于奇长的二进制序列, 这种猜想是真实的, 但即使长度仍然开放, 是否连长度为4的 Barker 序列都存在。 与已知的奇长的 Barker 序列必然是扭曲性对称性序列类似, 我们显示, 即使在长度的情况下, 也存在一种对称形式, 尽管是较弱的。 为了利用这种对称性, 我们得出不同的公式来计算周期相关性。 我们通过仅仅使用基本方法证明, 即使是长度 n > 4 和 $C% 3 3 { { { ccdots =C\\\\\\\ $ 1} 。