In this paper, we propose FFCI, a framework for fine-grained summarization evaluation that comprises four elements: faithfulness (degree of factual consistency with the source), focus (precision of summary content relative to the reference), coverage (recall of summary content relative to the reference), and inter-sentential coherence (document fluency between adjacent sentences). We construct a novel dataset for focus, coverage, and inter-sentential coherence, and develop automatic methods for evaluating each of the four dimensions of FFCI based on cross-comparison of evaluation metrics and model-based evaluation methods, including question answering (QA) approaches, STS, next-sentence prediction (NSP), and scores derived from 19 pre-trained language models. We then apply the developed metrics in evaluating a broad range of summarization models across two datasets, with some surprising findings.


翻译:在本文中,我们提议FFCI,这是一个精细总结评价框架,由四个要素组成:忠诚(与来源的实际一致性程度)、重点(与参考相比摘要内容的准确性)、覆盖面(参照参考内容的摘要回顾)和实质间的一致性(相邻句子之间的文件流畅程度),我们为重点、覆盖面和内容间的一致性建立一个新的数据集,并根据评价指标的交叉比较和基于模型的评价方法,包括问题回答方法、STS、下句预测和19个预先培训的语言模型的分数,制定自动方法,评估FFCI的四个层面的每一个层面,我们随后在评价两个数据集的广泛汇总模型时采用已开发的衡量标准,并得出一些令人惊讶的结论。

0
下载
关闭预览

相关内容

自动问答(Question Answering, QA)是指利用计算机自动回答用户所提出的问题以满足用户知识需求的任务。不同于现有搜索引擎,问答系统是信息服务的一种高级形式,系统返回用户的不再是基于关键词匹配排序的文档列表,而是精准的自然语言答案。近年来,随着人工智能的飞速发展,自动问答已经成为倍受关注且发展前景广泛的研究方向。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【CVPR2021】动态度量学习
专知会员服务
39+阅读 · 2021年3月30日
专知会员服务
11+阅读 · 2021年3月25日
【CVPR2021】自监督几何感知
专知会员服务
45+阅读 · 2021年3月6日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
4+阅读 · 2018年6月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
1+阅读 · 2021年9月5日
Arxiv
3+阅读 · 2018年12月18日
VIP会员
相关VIP内容
【CVPR2021】动态度量学习
专知会员服务
39+阅读 · 2021年3月30日
专知会员服务
11+阅读 · 2021年3月25日
【CVPR2021】自监督几何感知
专知会员服务
45+阅读 · 2021年3月6日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
4+阅读 · 2018年6月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员