Dialogue is an essential part of human communication and cooperation. Existing research mainly focuses on short dialogue scenarios in a one-on-one fashion. However, multi-person interactions in the real world, such as meetings or interviews, are frequently over a few thousand words. There is still a lack of corresponding research and powerful tools to understand and process such long dialogues. Therefore, in this work, we present a pre-training framework for long dialogue understanding and summarization. Considering the nature of long conversations, we propose a window-based denoising approach for generative pre-training. For a dialogue, it corrupts a window of text with dialogue-inspired noise, and guides the model to reconstruct this window based on the content of the remaining conversation. Furthermore, to process longer input, we augment the model with sparse attention which is combined with conventional attention in a hybrid manner. We conduct extensive experiments on five datasets of long dialogues, covering tasks of dialogue summarization, abstractive question answering and topic segmentation. Experimentally, we show that our pre-trained model DialogLM significantly surpasses the state-of-the-art models across datasets and tasks.


翻译:现有研究主要以一对一的方式关注短期对话情景。然而,在现实世界中,多人互动,例如会议或访谈,往往超过几千字。仍然缺乏相应的研究和有力的工具来理解和处理这种长期对话。因此,在这项工作中,我们提出了一个长期对话理解和总结的培训前框架。考虑到长期对话的性质,我们提议一种基于窗口的分层方法来进行基因化培训前的训练。在对话中,它腐蚀了一个带有对话激发的噪音的文本窗口,并指导基于剩余对话内容重建这一窗口的模式。此外,为了处理更长时间的投入,我们以分散的注意力来扩大模型,同时以混合的方式将常规关注结合起来。我们在五个长期对话的数据集上进行了广泛的实验,涵盖对话的总结、抽象问题解答和专题分解等任务。实验时,我们展示了我们预先培训的模型DialogLM大大超越了跨数据集和任务的最新模型。

0
下载
关闭预览

相关内容

【ICLR2021】彩色化变换器,Colorization Transformer
专知会员服务
9+阅读 · 2021年2月9日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
深度学习自然语言处理阅读清单
专知
23+阅读 · 2019年1月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
49+阅读 · 2021年9月11日
Arxiv
5+阅读 · 2019年8月22日
Arxiv
3+阅读 · 2018年12月18日
VIP会员
相关VIP内容
【ICLR2021】彩色化变换器,Colorization Transformer
专知会员服务
9+阅读 · 2021年2月9日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
深度学习自然语言处理阅读清单
专知
23+阅读 · 2019年1月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员