Current visualization based network interpretation methodssuffer from lacking semantic-level information. In this paper, we introduce the novel task of interpreting classification models using fine grained textual summarization. Along with the label prediction, the network will generate a sentence explaining its decision. Constructing a fully annotated dataset of filter|text pairs is unrealistic because of image to filter response function complexity. We instead propose a weakly-supervised learning algorithm leveraging off-the-shelf image caption annotations. Central to our algorithm is the filter-level attribute probability density function (PDF), learned as a conditional probability through Bayesian inference with the input image and its feature map as latent variables. We show our algorithm faithfully reflects the features learned by the model using rigorous applications like attribute based image retrieval and unsupervised text grounding. We further show that the textual summarization process can help in understanding network failure patterns and can provide clues for further improvements.

6
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html

Visual-semantic embedding enables various tasks such as image-text retrieval, image captioning, and visual question answering. The key to successful visual-semantic embedding is to express visual and textual data properly by accounting for their intricate relationship. While previous studies have achieved much advance by encoding the visual and textual data into a joint space where similar concepts are closely located, they often represent data by a single vector ignoring the presence of multiple important components in an image or text. Thus, in addition to the joint embedding space, we propose a novel multi-head self-attention network to capture various components of visual and textual data by attending to important parts in data. Our approach achieves the new state-of-the-art results in image-text retrieval tasks on MS-COCO and Flicker30K datasets. Through the visualization of the attention maps that capture distinct semantic components at multiple positions in the image and the text, we demonstrate that our method achieves an effective and interpretable visual-semantic joint space.

0
3
下载
预览

Text-to-image synthesis refers to computational methods which translate human written textual descriptions, in the form of keywords or sentences, into images with similar semantic meaning to the text. In earlier research, image synthesis relied mainly on word to image correlation analysis combined with supervised methods to find best alignment of the visual content matching to the text. Recent progress in deep learning (DL) has brought a new set of unsupervised deep learning methods, particularly deep generative models which are able to generate realistic visual images using suitably trained neural network models. In this paper, we review the most recent development in the text-to-image synthesis research domain. Our survey first introduces image synthesis and its challenges, and then reviews key concepts such as generative adversarial networks (GANs) and deep convolutional encoder-decoder neural networks (DCNN). After that, we propose a taxonomy to summarize GAN based text-to-image synthesis into four major categories: Semantic Enhancement GANs, Resolution Enhancement GANs, Diversity Enhancement GANS, and Motion Enhancement GANs. We elaborate the main objective of each group, and further review typical GAN architectures in each group. The taxonomy and the review outline the techniques and the evolution of different approaches, and eventually provide a clear roadmap to summarize the list of contemporaneous solutions that utilize GANs and DCNNs to generate enthralling results in categories such as human faces, birds, flowers, room interiors, object reconstruction from edge maps (games) etc. The survey will conclude with a comparison of the proposed solutions, challenges that remain unresolved, and future developments in the text-to-image synthesis domain.

0
5
下载
预览

Deep learning is increasingly used in decision-making tasks. However, understanding how neural networks produce final predictions remains a fundamental challenge. Existing work on interpreting neural network predictions for images often focuses on explaining predictions for single images or neurons. As predictions are often computed from millions of weights that are optimized over millions of images, such explanations can easily miss a bigger picture. We present Summit, an interactive system that scalably and systematically summarizes and visualizes what features a deep learning model has learned and how those features interact to make predictions. Summit introduces two new scalable summarization techniques: (1) activation aggregation discovers important neurons, and (2) neuron-influence aggregation identifies relationships among such neurons. Summit combines these techniques to create the novel attribution graph that reveals and summarizes crucial neuron associations and substructures that contribute to a model's outcomes. Summit scales to large data, such as the ImageNet dataset with 1.2M images, and leverages neural network feature visualization and dataset examples to help users distill large, complex neural network models into compact, interactive visualizations. We present neural network exploration scenarios where Summit helps us discover multiple surprising insights into a prevalent, large-scale image classifier's learned representations and informs future neural network architecture design. The Summit visualization runs in modern web browsers and is open-sourced.

0
4
下载
预览

Multi-label classification aims to classify instances with discrete non-exclusive labels. Most approaches on multi-label classification focus on effective adaptation or transformation of existing binary and multi-class learning approaches but fail in modelling the joint probability of labels or do not preserve generalization abilities for unseen label combinations. To address these issues we propose a new multi-label classification scheme, LNEMLC - Label Network Embedding for Multi-Label Classification, that embeds the label network and uses it to extend input space in learning and inference of any base multi-label classifier. The approach allows capturing of labels' joint probability at low computational complexity providing results comparable to the best methods reported in the literature. We demonstrate how the method reveals statistically significant improvements over the simple kNN baseline classifier. We also provide hints for selecting the robust configuration that works satisfactorily across data domains.

0
3
下载
预览

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

0
13
下载
预览

Coherence plays a critical role in producing a high-quality summary from a document. In recent years, neural extractive summarization is becoming increasingly attractive. However, most of them ignore the coherence of summaries when extracting sentences. As an effort towards extracting coherent summaries, we propose a neural coherence model to capture the cross-sentence semantic and syntactic coherence patterns. The proposed neural coherence model obviates the need for feature engineering and can be trained in an end-to-end fashion using unlabeled data. Empirical results show that the proposed neural coherence model can efficiently capture the cross-sentence coherence patterns. Using the combined output of the neural coherence model and ROUGE package as the reward, we design a reinforcement learning method to train a proposed neural extractive summarizer which is named Reinforced Neural Extractive Summarization (RNES) model. The RNES model learns to optimize coherence and informative importance of the summary simultaneously. Experimental results show that the proposed RNES outperforms existing baselines and achieves state-of-the-art performance in term of ROUGE on CNN/Daily Mail dataset. The qualitative evaluation indicates that summaries produced by RNES are more coherent and readable.

0
6
下载
预览

In this paper, the problem of describing visual contents of a video sequence with natural language is addressed. Unlike previous video captioning work mainly exploiting the cues of video contents to make a language description, we propose a reconstruction network (RecNet) with a novel encoder-decoder-reconstructor architecture, which leverages both the forward (video to sentence) and backward (sentence to video) flows for video captioning. Specifically, the encoder-decoder makes use of the forward flow to produce the sentence description based on the encoded video semantic features. Two types of reconstructors are customized to employ the backward flow and reproduce the video features based on the hidden state sequence generated by the decoder. The generation loss yielded by the encoder-decoder and the reconstruction loss introduced by the reconstructor are jointly drawn into training the proposed RecNet in an end-to-end fashion. Experimental results on benchmark datasets demonstrate that the proposed reconstructor can boost the encoder-decoder models and leads to significant gains in video caption accuracy.

0
5
下载
预览

This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.

0
17
下载
预览

Cross-modal information retrieval aims to find heterogeneous data of various modalities from a given query of one modality. The main challenge is to map different modalities into a common semantic space, in which distance between concepts in different modalities can be well modeled. For cross-modal information retrieval between images and texts, existing work mostly uses off-the-shelf Convolutional Neural Network (CNN) for image feature extraction. For texts, word-level features such as bag-of-words or word2vec are employed to build deep learning models to represent texts. Besides word-level semantics, the semantic relations between words are also informative but less explored. In this paper, we model texts by graphs using similarity measure based on word2vec. A dual-path neural network model is proposed for couple feature learning in cross-modal information retrieval. One path utilizes Graph Convolutional Network (GCN) for text modeling based on graph representations. The other path uses a neural network with layers of nonlinearities for image modeling based on off-the-shelf features. The model is trained by a pairwise similarity loss function to maximize the similarity of relevant text-image pairs and minimize the similarity of irrelevant pairs. Experimental results show that the proposed model outperforms the state-of-the-art methods significantly, with 17% improvement on accuracy for the best case.

0
3
下载
预览

This paper reviews recent studies in understanding neural-network representations and learning neural networks with interpretable/disentangled middle-layer representations. Although deep neural networks have exhibited superior performance in various tasks, the interpretability is always the Achilles' heel of deep neural networks. At present, deep neural networks obtain high discrimination power at the cost of low interpretability of their black-box representations. We believe that high model interpretability may help people to break several bottlenecks of deep learning, e.g., learning from very few annotations, learning via human-computer communications at the semantic level, and semantically debugging network representations. We focus on convolutional neural networks (CNNs), and we revisit the visualization of CNN representations, methods of diagnosing representations of pre-trained CNNs, approaches for disentangling pre-trained CNN representations, learning of CNNs with disentangled representations, and middle-to-end learning based on model interpretability. Finally, we discuss prospective trends in explainable artificial intelligence.

0
12
下载
预览
小贴士
相关论文
MHSAN: Multi-Head Self-Attention Network for Visual Semantic Embedding
Geondo Park,Chihye Han,Wonjun Yoon,Daeshik Kim
3+阅读 · 2020年1月11日
A Survey and Taxonomy of Adversarial Neural Networks for Text-to-Image Synthesis
Jorge Agnese,Jonathan Herrera,Haicheng Tao,Xingquan Zhu
5+阅读 · 2019年10月21日
Summit: Scaling Deep Learning Interpretability by Visualizing Activation and Attribution Summarizations
Fred Hohman,Haekyu Park,Caleb Robinson,Duen Horng Chau
4+阅读 · 2019年9月2日
Piotr Szymański,Tomasz Kajdanowicz,Nitesh Chawla
3+阅读 · 2019年1月1日
Mantong Zhou,Minlie Huang,Xiaoyan Zhu
13+阅读 · 2018年6月1日
Yuxiang Wu,Baotian Hu
6+阅读 · 2018年4月19日
Bairui Wang,Lin Ma,Wei Zhang,Wei Liu
5+阅读 · 2018年3月30日
Quanshi Zhang,Ying Nian Wu,Song-Chun Zhu
17+阅读 · 2018年2月14日
Jing Yu,Yuhang Lu,Zengchang Qin,Yanbing Liu,Jianlong Tan,Li Guo,Weifeng Zhang
3+阅读 · 2018年2月13日
Quanshi Zhang,Song-Chun Zhu
12+阅读 · 2018年2月7日
相关资讯
AI可解释性文献列表
专知
36+阅读 · 2019年10月7日
Hierarchically Structured Meta-learning
CreateAMind
12+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
9+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
15+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
13+阅读 · 2017年10月5日
Top