In recent years, thanks to the rapid development of deep learning (DL), DL-based multi-task learning (MTL) has made significant progress, and it has been successfully applied to recommendation systems (RS). However, in a recommender system, the correlations among the involved tasks are complex. Therefore, the existing MTL models designed for RS suffer from negative transfer to different degrees, which will injure optimization in MTL. We find that the root cause of negative transfer is feature redundancy that features learned for different tasks interfere with each other. To alleviate the issue of negative transfer, we propose a novel multi-task learning method termed Feature Decomposition Network (FDN). The key idea of the proposed FDN is reducing the phenomenon of feature redundancy by explicitly decomposing features into task-specific features and task-shared features with carefully designed constraints. We demonstrate the effectiveness of the proposed method on two datasets, a synthetic dataset and a public datasets (i.e., Ali-CCP). Experimental results show that our proposed FDN can outperform the state-of-the-art (SOTA) methods by a noticeable margin.


翻译:近年来,由于深入学习(DL)的迅速发展,基于DL的多任务学习(MTL)取得了显著进展,并已成功地应用于建议系统(RS)。然而,在建议系统中,所涉任务之间的相互关系是复杂的,因此,为RS设计的现有的MTL模型在不同程度上发生负转移,这将损害MTL的优化。我们发现,负转移的根本原因是重复的特点,而不同任务所学到的特征相互干扰。为缓解负面转移问题,我们提议了一种新型的多任务学习方法,称为地物分解网络(FDN)。拟议FDN的主要想法是将特性明确分解为具体任务的特点和任务分担的特点,并经过仔细设计的限制,从而减少特征冗余现象。我们展示了拟议的关于两个数据集、合成数据集和公共数据集(即Ali-CCP)的方法的有效性。实验结果表明,我们提议的FDN能够通过一个显著的幅度超越状态(SOTA)方法。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
49+阅读 · 2022年10月2日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2022年10月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员