Unsupervised person re-identification (re-ID) remains a challenging task, where the classifier and feature representation could be easily misled by the noisy pseudo labels towards deteriorated over-fitting. In this paper, we propose a simple yet effective approach, termed Group Sampling, to alleviate the negative impact of noisy pseudo labels within unsupervised person re-ID models. The idea behind Group Sampling is that it can gather a group of samples from the same class in the same mini-batch, such that the model is trained upon group normalized samples while alleviating the effect of a single sample. Group sampling updates the pipeline of pseudo label generation by guaranteeing the samples to be better divided into the correct classes. Group Sampling regularizes classifier training and representation learning, leading to the statistical stability of feature representation in a progressive fashion. Qualitative and quantitative experiments on Market-1501, DukeMTMC-reID, and MSMT17 show that Grouping Sampling improves the state-of-the-arts by up to 2.2%~6.1%. Code is available at https://github.com/wavinflaghxm/GroupSampling.


翻译:无人监督的人重新识别(re-ID)仍然是一项艰巨的任务,在这种任务中,分类员和特征代表可能很容易被杂声假标签误导,导致条件恶化的过度装配。在本文件中,我们提出一个简单而有效的方法,称为群体抽样,以减轻无人监督的人重新身份模型中杂音假标签的负面影响。小组取样背后的想法是,它可以在同一小批中从同一类中收集一组样本,以便该模型在降低单一样本效果的同时,对组级正常化样本进行培训。小组抽样更新假标签生成管道,保证将样品更好地分为正确的类别。小组取样员培训和代表性学习正规化,逐步导致特征代表的统计稳定性。关于市场1501、杜克MTMC-reID和MSMT17的定性和定量实验显示,分组取样将状态改善至2.2 ⁇ 6.1%。代码可在 https://github.com/wastagashxm/Groupamping查阅 https://giuthub.com/wastagexhxm/Gromabling.

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
专知会员服务
15+阅读 · 2021年5月21日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Unsupervised clothing change adaptive person ReID
Arxiv
0+阅读 · 2021年9月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员