We design new visual illusions by finding "adversarial examples" for principled models of human perception -- specifically, for probabilistic models, which treat vision as Bayesian inference. To perform this search efficiently, we design a differentiable probabilistic programming language, whose API exposes MCMC inference as a first-class differentiable function. We demonstrate our method by automatically creating illusions for three features of human vision: color constancy, size constancy, and face perception.
翻译:我们设计了新的视觉假象,为人类感知的原则模式寻找“对抗范例 ”, 特别是概率模型, 将视觉视为贝叶斯人的推论。 为了高效地进行这种搜索, 我们设计了一种不同的概率性编程语言, 它的API将MCMC的推论暴露为一流的不同功能。 我们通过自动为人类视觉的三个特征创造假象来展示我们的方法: 颜色耐久性、 体积的耐久性和面部感知。