We explore techniques for eye gaze estimation using machine learning. Eye gaze estimation is a common problem for various behavior analysis and human-computer interfaces. The purpose of this work is to discuss various model types for eye gaze estimation and present the results from predicting gaze direction using eye landmarks in unconstrained settings. In unconstrained real-world settings, feature-based and model-based methods are outperformed by recent appearance-based methods due to factors like illumination changes and other visual artifacts. We discuss a learning-based method for eye region landmark localization trained exclusively on synthetic data. We discuss how to use detected landmarks as input to iterative model-fitting and lightweight learning-based gaze estimation methods and how to use the model for person-independent and personalized gaze estimations.


翻译:我们利用机器学习来探索眼视估计技术。眼视估计是各种行为分析和人-计算机界面的一个常见问题。这项工作的目的是讨论眼视估计的各种模型类型,并介绍在不受限制的环境中使用不受限制的地标预测眼视方向的结果。在不受限制的现实世界环境中,由于光化变化和其他视觉艺术品等因素,基于地貌和模型的方法在近期的外观方法中表现优于前者。我们讨论了专门针对合成数据培训的基于学习的眼视区域里程碑定位方法。我们讨论了如何使用已探测到的地标作为迭代模型和轻量的基于学习的目视估计方法的投入,以及如何使用该模型进行个人独立和个性化的目视估计。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月27日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员