We explore techniques for eye gaze estimation using machine learning. Eye gaze estimation is a common problem for various behavior analysis and human-computer interfaces. The purpose of this work is to discuss various model types for eye gaze estimation and present the results from predicting gaze direction using eye landmarks in unconstrained settings. In unconstrained real-world settings, feature-based and model-based methods are outperformed by recent appearance-based methods due to factors like illumination changes and other visual artifacts. We discuss a learning-based method for eye region landmark localization trained exclusively on synthetic data. We discuss how to use detected landmarks as input to iterative model-fitting and lightweight learning-based gaze estimation methods and how to use the model for person-independent and personalized gaze estimations.
翻译:我们利用机器学习来探索眼视估计技术。眼视估计是各种行为分析和人-计算机界面的一个常见问题。这项工作的目的是讨论眼视估计的各种模型类型,并介绍在不受限制的环境中使用不受限制的地标预测眼视方向的结果。在不受限制的现实世界环境中,由于光化变化和其他视觉艺术品等因素,基于地貌和模型的方法在近期的外观方法中表现优于前者。我们讨论了专门针对合成数据培训的基于学习的眼视区域里程碑定位方法。我们讨论了如何使用已探测到的地标作为迭代模型和轻量的基于学习的目视估计方法的投入,以及如何使用该模型进行个人独立和个性化的目视估计。