Deep models trained using synthetic data require domain adaptation to bridge the gap between the simulation and target environments. State-of-the-art domain adaptation methods often demand sufficient amounts of (unlabelled) data from the target domain. However, this need is difficult to fulfil when the target domain is an extreme environment, such as space. In this paper, our target problem is close proximity satellite pose estimation, where it is costly to obtain images of satellites from actual rendezvous missions. We demonstrate that event sensing offers a promising solution to generalise from the simulation to the target domain under stark illumination differences. Our main contribution is an event-based satellite pose estimation technique, trained purely on synthetic event data with basic data augmentation to improve robustness against practical (noisy) event sensors. Underpinning our method is a novel dataset with carefully calibrated ground truth, comprising of real event data obtained by emulating satellite rendezvous scenarios in the lab under drastic lighting conditions. Results on the dataset showed that our event-based satellite pose estimation method, trained only on synthetic data without adaptation, could generalise to the target domain effectively.
翻译:利用合成数据培训的深层模型需要进行领域调整,以缩小模拟与目标环境之间的差距。最先进的领域适应方法往往要求目标领域提供足够数量的(未贴标签的)数据。然而,当目标领域是空间等极端环境时,这种需要就难以满足。在本文中,我们的目标问题是近距离卫星构成估计,从实际的会合飞行任务中获取卫星图像的成本很高。我们证明,事件感测为从模拟到目标领域在赤裸裸的光度差异下推广提供了一个有希望的解决方案。我们的主要贡献是基于事件的卫星构成估计技术,纯粹在具有基本数据增强能力的合成事件数据方面接受培训,以提高对实用(新奇)事件传感器的可靠性。我们的方法是一种新颖的数据,经过仔细校准的地面真实性,其中包括在极端照明条件下在实验室模拟卫星会合情景中获得的真实性数据。关于数据集的结果表明,我们的事件卫星构成的估算方法只有经过未经调整的合成数据,才能有效地概括到目标领域。