A range of defense methods have been proposed to improve the robustness of neural networks on adversarial examples, among which provable defense methods have been demonstrated to be effective to train neural networks that are certifiably robust to the attacker. However, most of these provable defense methods treat all examples equally during training process, which ignore the inconsistent constraint of certified robustness between correctly classified (natural) and misclassified examples. In this paper, we explore this inconsistency caused by misclassified examples and add a novel consistency regularization term to make better use of the misclassified examples. Specifically, we identified that the certified robustness of network can be significantly improved if the constraint of certified robustness on misclassified examples and correctly classified examples is consistent. Motivated by this discovery, we design a new defense regularization term called Misclassification Aware Adversarial Regularization (MAAR), which constrains the output probability distributions of all examples in the certified region of the misclassified example. Experimental results show that our proposed MAAR achieves the best certified robustness and comparable accuracy on CIFAR-10 and MNIST datasets in comparison with several state-of-the-art methods.


翻译:已经提出了一系列的防御方法,以提高神经网络在对抗性例子方面的稳健性,其中可证实的防御方法已证明对训练神经网络是有效的,对攻击者来说,这些可证明是稳健的。然而,大多数可证实的国防方法在培训过程中对所有例子一视同仁,忽视了正确分类(自然)和错误分类实例之间经核证的稳健性之间的不一致制约。在本文件中,我们探讨了错误分类实例造成的这种不一致,并增加了一个新的一致性规范术语,以便更好地使用错误分类的例子。具体地说,我们发现,如果对错误分类实例和正确分类实例的经证明的稳健性受到一致的限制,那么经证明的网络的稳健性是可以大大改进的。受这一发现驱使,我们设计了一个新的国防正规化术语,称为 " 认知错误分类 " (MAAR),它制约了认证错误分类实例所在区域所有实例的输出概率分布。实验结果表明,我们提议的MAAR在CAR-10和MNIST数据集方面获得了最佳的经证明的稳健性和可比的准确性。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Neural Networks and Denotation
Arxiv
0+阅读 · 2021年3月15日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员