When trying to independently apply image-trained algorithms to successive frames in videos, noxious flickering tends to appear. State-of-the-art post-processing techniques that aim at fostering temporal consistency, generate other temporal artifacts and visually alter the style of videos. We propose a postprocessing model, agnostic to the transformation applied to videos (e.g. style transfer, image manipulation using GANs, etc.), in the form of a recurrent neural network. Our model is trained using a Ping Pong procedure and its corresponding loss, recently introduced for GAN video generation, as well as a novel style preserving perceptual loss. The former improves long-term temporal consistency learning, while the latter fosters style preservation. We evaluate our model on the DAVIS and videvo.net datasets and show that our approach offers state-of-the-art results concerning flicker removal, and better keeps the overall style of the videos than previous approaches.
翻译:当试图独立地将经过图像训练的算法应用到连续的视频框中时,就会出现恶性闪烁。最先进的后处理技术,目的是促进时间一致性、产生其他时间性文物和视觉改变视频风格。我们提出了一个后处理模型,对视频应用的变换(如风格传输、使用GANs等图像操纵)不可知,其形式为经常性神经网络。我们的模型是使用Ping Pong程序及其相应的损失来培训的,最近为GAN视频生成引入了这种程序,并采用了新颖风格来保存概念性损失。前者改进长期时间一致性学习,而后者则促进风格保护。我们评估了DAVIS和Videvo.net数据集的后处理模型,并表明我们的方法提供了与闪光清除有关的最先进的结果,并且比以前的方法更好地保持了视频的总体风格。