Using only global image-class labels, weakly-supervised learning methods, such as class activation mapping, allow training CNNs to jointly classify an image, and locate regions of interest associated with the predicted class. However, without any guidance at the pixel level, such methods may yield inaccurate regions. This problem is known to be more challenging with histology images than with natural ones, since objects are less salient, structures have more variations, and foreground and background regions have stronger similarities. Therefore, computer vision methods for visual interpretation of CNNs may not directly apply. In this paper, a simple yet efficient method based on a composite loss is proposed to learn information from the fully negative samples (i.e., samples without positive regions), and thereby reduce false positives/negatives. Our new loss function contains two complementary terms: the first exploits positive evidence collected from the CNN classifier, while the second leverages the fully negative samples from training data. In particular, a pre-trained CNN is equipped with a decoder that allows refining the regions of interest. The CNN is exploited to collect both positive and negative evidence at the pixel level to train the decoder. Our method called NEGEV benefits from the fully negative samples that naturally occur in the data, without any additional supervision signals beyond image-class labels. Extensive experiments show that our proposed method can substantial outperform related state-of-art methods on GlaS (public benchmark for colon cancer), and Camelyon16 (patch-based benchmark for breast cancer using three different backbones). Our results highlight the benefits of using both positive and negative evidence, the first obtained from a classifier, and the other naturally available in datasets.


翻译:仅使用全球图像类标签, 低监管的学习方法, 如阶级启动映射等, 使CNN能够对图像进行联合分类, 并定位与预测类相关的相关区域。 但是, 在没有像素级任何指导的情况下, 这些方法可能会产生不准确的区域。 众所周知, 这个问题在组织图像上比自然图象更具挑战性, 因为对象不那么突出, 结构差异更大, 以及背景和背景区域有更强烈的相似性。 因此, 对CNN进行直观解读的计算机直观方法可能无法直接应用。 在本文中, 以综合损失为基础的简单而有效的方法来从完全负面的样本中( 即样本没有正面的区域) 学习信息, 从而降低错误的正反效果/ 。 我们的新损失函数包含两个互补条件: 第一次利用从CNNCNN分析器采集的正面证据, 而第二个则利用培训数据中完全负的样本。 特别是, 受过训练的CNNCN可以配置一个直径直的分解器, 来改善感兴趣的区域 。 CNNCM 被利用一个基于综合损失的简单的简单的简单证据,,, 来收集到在正常的基底基级的基底基级的正基比,,,, 的基底的基级的基级的基比, 显示我们的底基级的基比 显示我们的基比 显示我们基,,, 显示的基级的基, 显示我们基级的基 的基 的基 显示我们基 的基 显示我们基 的基 的基 的基 的基, 的基级 的 的 的 的基级 显示我们的基级 的基级, 的基 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的

0
下载
关闭预览

相关内容

专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员