We study the problem of deciding the winner of reachability switching games for zero-, one-, and two-player variants. Switching games provide a deterministic analogue of stochastic games. We show that the zero-player case is NL-hard, the one-player case is NP-complete, and that the two-player case is PSPACE-hard and in EXPTIME. For the zero-player case, we also show P-hardness for a succinctly-represented model that maintains the upper bound of NP $\cap$ coNP. For the one- and two-player cases, our results hold in both the natural, explicit model and succinctly-represented model. Our results show that the switching variant of a game is harder in complexity-theoretic terms than the corresponding stochastic version.
翻译:我们研究了决定零、一和二玩家变异的可达性转换游戏胜出者的问题。 切换游戏提供了随机游戏的决定性类比。 我们显示,零玩家的病例是NL-hard, 单玩家的病例是NP- 完整的, 双玩家的病例是PSPACE- hard 和 EXPTIME 。 在零玩家的案例中, 我们还展示了P- 硬性, 用于维持NP $\ cap$ coNP 上限的简明代表模型。 对于一玩家和二玩家的案例中, 我们的结果是持有自然、 明确模型和简单代表的模型。 我们的结果显示, 游戏的变换式在复杂理论术语上比相应的随机版本更难。