Fortier et al. \cite{fklst} proposed several research problems on packing arborescences. Some of them were settled in that paper and others were solved later by Matsuoka and Tanigawa \cite{mt} and Gao and Yang \cite{gy}. The last open problem will be settled in this paper. We show how to turn an inductive idea used in the last two articles into a simple proof technique that allows to relate previous results on arborescence packings. We show how a strong version of Edmonds' theorem \cite{e} on packing spanning arborescences implies Kamiyama, Katoh and Takizawa's result \cite{kkt} on packing reachability arborescences and how Durand de Gevigney, Nguyen and Szigeti's theorem \cite{dns} on matroid-based packing of arborescences implies Kir\'aly's result \cite{k} on matroid-reachability-based packing of arborescences. Finally, we deduce a new result on matroid-reachability-based packing of mixed hyperarborescences from a theorem on matroid-based packing of mixed hyperarborescences due to Fortier et al. \cite{fklst}. All the proofs provide efficient algorithms to find a solution to the corresponding problems.
翻译:Fortier et al.\ cite{fklst} 提议了有关包装食欲包装的若干研究问题。 有些在纸上已经解决了, 另一些则后来由松冈和塔尼加(Tanigawa)\ cite{mt} 以及高和杨(Go and Yang) 解决。 最后一个公开的问题将在本文中解决。 我们展示了如何将最后两篇文章中使用的感应理念转化为简单的证明技术, 从而可以将先前的食欲包装结果联系起来。 我们展示了在包装上坚固的埃德蒙斯的理论和辛特尼特(Cite{ets) 的强效版本 意味着甲米山、卡塔赫和塔基澤(Takzawa) 的可达性包装结果 以及Durand de Gevigney、 Nguy和Szigeti的理论和基于甲状腺的耐受精度 。 我们展示了基于甲状腺(rbrees) 的包装中以基质和辛基(c) 辛基) 和辛基) 机(creabreal- realbreal- realembrealbrealmabrealmably) 的易成型包装结果。