In this paper, we present a blockwise optimization method for masking-based networks (BLOOM-Net) for training scalable speech enhancement networks. Here, we design our network with a residual learning scheme and train the internal separator blocks sequentially to obtain a scalable masking-based deep neural network for speech enhancement. Its scalability lets it adjust the run-time complexity based on the test-time resource constraints: once deployed, the model can alter its complexity dynamically depending on the test time environment. To this end, we modularize our models in that they can flexibly accommodate varying needs for enhancement performance and constraints on the resources, incurring minimal memory or training overhead due to the added scalability. Our experiments on speech enhancement demonstrate that the proposed blockwise optimization method achieves the desired scalability with only a slight performance degradation compared to corresponding models trained end-to-end.


翻译:在本文中,我们为基于掩蔽的网络(BLOOM-Net)提出了一个用于培训可缩放语音增强网络的块状优化方法(BLOOM-Net ) 。 在这里,我们用一个剩余学习计划来设计我们的网络,并依次培训内部分隔器块,以便获得一个可缩放的基于遮蔽的深神经网络来增强语音。它的缩放性允许它根据测试时间资源的限制来调整运行时间的复杂性:一旦部署,模型可以根据测试时间环境动态地改变其复杂性。 为此,我们将模型模块化,以便它们灵活地满足对提高性能的不同需要和资源的限制,由于增加的可缩放性而导致最小的记忆或培训间接费用。 我们在增强语音方面的实验表明,拟议的块状优化方法能够达到预期的缩放性,与经过培训的终端到终端的相应模型相比,只有轻微的性能退化。

0
下载
关闭预览

相关内容

语音增强是指当语音信号被各种各样的噪声干扰、甚至淹没后,从噪声背景中提取有用的语音信号,抑制、降低噪声干扰的技术。一句话,从含噪语音中提取尽可能纯净的原始语音。
【AAAI2022】自适应的随机平滑防御的鲁棒性认证方法
专知会员服务
26+阅读 · 2021年12月27日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
53+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Phase-aware Speech Enhancement with Deep Complex U-Net
Neural Speech Synthesis with Transformer Network
Arxiv
5+阅读 · 2019年1月30日
Arxiv
8+阅读 · 2018年11月27日
VIP会员
相关VIP内容
【AAAI2022】自适应的随机平滑防御的鲁棒性认证方法
专知会员服务
26+阅读 · 2021年12月27日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
53+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
Top
微信扫码咨询专知VIP会员