Conditional distributions, as defined by the Markov category framework, are studied in the setting of matrix algebras (quantum systems). Their construction as linear unital maps are obtained via a categorical Bayesian inversion procedure. Simple criteria establishing when such linear maps are positive are obtained. Several examples are provided, including the standard EPR scenario, where the EPR correlations are reproduced in a purely compositional (categorical) manner. A comparison between the Bayes map, the Petz recovery map, and the Leifer-Spekkens acausal belief propagation is provided, illustrating some similarities and key differences.

0
下载
关闭预览

相关内容

We study the entropic Gromov-Wasserstein and its unbalanced version between (unbalanced) Gaussian distributions with different dimensions. When the metric is the inner product, which we refer to as inner product Gromov-Wasserstein (IGW), we demonstrate that the optimal transportation plans of entropic IGW and its unbalanced variant are (unbalanced) Gaussian distributions. Via an application of von Neumann's trace inequality, we obtain closed-form expressions for the entropic IGW between these Gaussian distributions. Finally, we consider an entropic inner product Gromov-Wasserstein barycenter of multiple Gaussian distributions. We prove that the barycenter is a Gaussian distribution when the entropic regularization parameter is small. We further derive a closed-form expression for the covariance matrix of the barycenter.

0
0
下载
预览

We develop a novel connection between discrepancy minimization and (quantum) communication complexity. As an application, we resolve a substantial special case of the Matrix Spencer conjecture. In particular, we show that for every collection of symmetric $n \times n$ matrices $A_1,\ldots,A_n$ with $\|A_i\| \leq 1$ and $\|A_i\|_F \leq n^{1/4}$ there exist signs $x \in \{ \pm 1\}^n$ such that the maximum eigenvalue of $\sum_{i \leq n} x_i A_i$ is at most $O(\sqrt n)$. We give a polynomial-time algorithm based on partial coloring and semidefinite programming to find such $x$. Our techniques open a new avenue to use tools from communication complexity and information theory to study discrepancy. The proof of our main result combines a simple compression scheme for transcripts of repeated (quantum) communication protocols with quantum state purification, the Holevo bound from quantum information, and tools from sketching and dimensionality reduction. Our approach also offers a promising avenue to resolve the Matrix Spencer conjecture completely -- we show it is implied by a natural conjecture in quantum communication complexity.

0
0
下载
预览

Generative models are typically trained on grid-like data such as images. As a result, the size of these models usually scales directly with the underlying grid resolution. In this paper, we abandon discretized grids and instead parameterize individual data points by continuous functions. We then build generative models by learning distributions over such functions. By treating data points as functions, we can abstract away from the specific type of data we train on and construct models that are agnostic to discretization. To train our model, we use an adversarial approach with a discriminator that acts on continuous signals. Through experiments on a wide variety of data modalities including images, 3D shapes and climate data, we demonstrate that our model can learn rich distributions of functions independently of data type and resolution.

0
0
下载
预览

We study quantum algorithms for several fundamental string problems, including Longest Common Substring, Lexicographically Minimal String Rotation, and Longest Square Substring. These problems have been widely studied in the stringology literature since the 1970s, and are known to be solvable by near-linear time classical algorithms. In this work, we give quantum algorithms for these problems with near-optimal query complexities and time complexities. Specifically, we show that: - Longest Common Substring can be solved by a quantum algorithm in $\tilde O(n^{2/3})$ time, improving upon the recent $\tilde O(n^{5/6})$-time algorithm by Le Gall and Seddighin (2020). Our algorithm uses the MNRS quantum walk framework, together with a careful combination of string synchronizing sets (Kempa and Kociumaka, 2019) and generalized difference covers. - Lexicographically Minimal String Rotation can be solved by a quantum algorithm in $n^{1/2 + o(1)}$ time, improving upon the recent $\tilde O(n^{3/4})$-time algorithm by Wang and Ying (2020). We design our algorithm by first giving a new classical divide-and-conquer algorithm in near-linear time based on exclusion rules, and then speeding it up quadratically using nested Grover search and quantum minimum finding. - Longest Square Substring can be solved by a quantum algorithm in $\tilde O(\sqrt{n})$ time. Our algorithm is an adaptation of the algorithm by Le Gall and Seddighin (2020) for the Longest Palindromic Substring problem, but uses additional techniques to overcome the difficulty that binary search no longer applies. Our techniques naturally extend to other related string problems, such as Longest Repeated Substring, Longest Lyndon Substring, and Minimal Suffix.

0
0
下载
预览

In the synthesis of distributed systems, we automate the development of distributed programs and hardware by automatically deriving correct implementations from formal specifications. For synchronous distributed systems, the synthesis problem is well known to be undecidable. For asynchronous systems, the boundary between decidable and undecidable synthesis problems is a long-standing open question. We study the problem in the setting of Petri games, a framework for distributed systems where asynchronous processes are equipped with causal memory. Petri games extend Petri nets with a distinction between system places and environment places. The components of a distributed system are the players of the game, represented as tokens that exchange information during each synchronization. Previous decidability results for this model are limited to local winning conditions, i.e., conditions that only refer to individual components. In this paper, we consider global winning conditions such as mutual exclusion, i.e., conditions that refer to the state of all components. We provide decidability and undecidability results for global winning conditions. First, we prove for winning conditions given as bad markings that it is decidable whether a winning strategy for the system players exists in Petri games with a bounded number of system players and one environment player. Second, we prove for winning conditions that refer to both good and bad markings that it is undecidable whether a winning strategy for the system players exists in Petri games with at least two system players and one environment player. Our results thus show that, on the one hand, it is indeed possible to use global safety specifications like mutual exclusion in the synthesis of distributed systems. However, on the other hand, adding global liveness specifications results in an undecidable synthesis problem for almost all Petri games.

0
0
下载
预览

These lecture notes cover basic automata-theoretic concepts and logical formalisms for the modeling and verification of concurrent and distributed systems. Many of these concepts naturally extend the classical automata and logics over words, which provide a framework for modeling sequential systems. A distributed system, on the other hand, combines several (finite or recursive) processes, and will therefore be modeled as a collection of (finite or pushdown, respectively) automata. A crucial parameter of a distributed system is the kind of interaction that is allowed between processes. In this lecture, we focus on the message-passing paradigm. In general, communication in a distributed system creates complex dependencies between events, which are hidden when using a sequential, operational semantics. The approach taken here is based on a faithful preservation of the dependencies of concurrent events. That is, an execution of a system is modeled as a partial order, or graph, rather than a sequence of events.

0
0
下载
预览

In this work, we consider the task of faithfully simulating a quantum measurement, acting on a joint bipartite quantum state, in a distributed manner. In the distributed setup, the constituent sub-systems of the joint quantum state are measured by two agents, Alice and Bob. A third agent, Charlie receives the measurement outcomes sent by Alice and Bob. Charlie uses local and pairwise shared randomness to compute a bivariate function of the measurement outcomes. The objective of three agents is to faithfully simulate the given distributed quantum measurement acting on the given quantum state while minimizing the communication and shared randomness rates. We demonstrate a new achievable information-theoretic rate-region that exploits the bivariate function using random structured POVMs based on asymptotically good algebraic codes. The algebraic structure of these codes is matched to that of the bivariate function that models the action of Charlie. The conventional approach for this class of problems has been to reconstruct individual measurement outcomes corresponding to Alice and Bob, at Charlie, and then compute the bivariate function, achieved using mutually independent approximating POVMs based on random unstructured codes. In the present approach, using algebraic structured POVMs, the computation is performed on the fly, thus obviating the need to reconstruct individual measurement outcomes at Charlie. Using this, we show that a strictly larger rate region can be achieved. One of the challenges in analyzing these structured POVMs is that they exhibit only pairwise independence and induce only uniform single-letter distributions. To address this, we use nesting of algebraic codes and develop a covering lemma applicable to pairwise-independent POVM ensembles. Combining these techniques, we provide a multi-party distributed faithful simulation and function computation protocol.

0
0
下载
预览

Optimal transport (OT) has recently found widespread interest in machine learning. It allows to define novel distances between probability measures, which have shown promise in several applications. In this work, we discuss how to computationally approach general non-linear OT problems within the framework of Riemannian manifold optimization. The basis of this is the manifold of doubly stochastic matrices (and their generalization). Even though the manifold geometry is not new, surprisingly, its usefulness for solving general non-linear OT problems has not been popular. To this end, we specifically discuss optimization-related ingredients that allow modeling the OT problem on smooth Riemannian manifolds by exploiting the geometry of the search space. We also discuss extensions where we reuse the developed optimization ingredients. We make available the Manifold optimization-based Optimal Transport, or MOT, repository with codes useful in solving OT problems in Python and Matlab. The codes are available at \url{https://github.com/SatyadevNtv/MOT}.

0
0
下载
预览

We study the relationship between the Quantum Approximate Optimization Algorithm (QAOA) and the underlying symmetries of the objective function to be optimized. Our approach formalizes the connection between quantum symmetry properties of the QAOA dynamics and the group of classical symmetries of the objective function. The connection is general and includes but is not limited to problems defined on graphs. We show a series of results exploring the connection and highlight examples of hard problem classes where a nontrivial symmetry subgroup can be obtained efficiently. In particular we show how classical objective function symmetries lead to invariant measurement outcome probabilities across states connected by such symmetries, independent of the choice of algorithm parameters or number of layers. To illustrate the power of the developed connection, we apply machine learning techniques towards predicting QAOA performance based on symmetry considerations. We provide numerical evidence that a small set of graph symmetry properties suffices to predict the minimum QAOA depth required to achieve a target approximation ratio on the MaxCut problem, in a practically important setting where QAOA parameter schedules are constrained to be linear and hence easier to optimize.

0
0
下载
预览

In the rate-distortion function and the Maximum Entropy (ME) method, Minimum Mutual In-formation (MMI) distributions and ME distributions are expressed by Bayes-like formulas, in-cluding Negative Exponential Functions (NEFs) and partition functions. Why do these non-probability functions exist in Bayes-like formulas? On the other hand, the rate-distortion function has three disadvantages: (1) the distortion function is subjectively defined; (2) the defi-nition of the distortion function between instances and labels is often difficult; (3) it cannot be used for data compression according to the labels' semantic meanings. The author has proposed using the semantic information G measure with both statistical probability and logical probability before. We can now explain NEFs as truth functions, partition functions as logical probabilities, Bayes-like formulas as semantic Bayes' formulas, MMI as Semantic Mutual Information (SMI), and ME as extreme ME minus SMI. In overcoming the above disadvantages, this paper sets up the relationship between truth functions and distortion functions, obtains truth functions from samples by machine learning, and constructs constraint conditions with truth functions to extend rate-distortion functions. Two examples are used to help readers understand the MMI iteration and to support the theoretical results. Using truth functions and the semantic information G measure, we can combine machine learning and data compression, including semantic com-pression. We need further studies to explore general data compression and recovery, according to the semantic meaning.

0
0
下载
预览
小贴士
相关主题
相关论文
Khang Le,Dung Le,Huy Nguyen,Dat Do,Tung Pham,Nhat Ho
0+阅读 · 10月21日
Samuel B. Hopkins,Prasad Raghavendra,Abhishek Shetty
0+阅读 · 10月19日
Emilien Dupont,Yee Whye Teh,Arnaud Doucet
0+阅读 · 10月19日
Shyan Akmal,Ce Jin
0+阅读 · 10月19日
Bernd Finkbeiner,Manuel Gieseking,Jesko Hecking-Harbusch,Ernst-Rüdiger Olderog
0+阅读 · 10月18日
Benedikt Bollig,Paul Gastin
0+阅读 · 10月17日
Bamdev Mishra,N T V Satyadev,Hiroyuki Kasai,Pratik Jawanpuria
0+阅读 · 10月8日
Ruslan Shaydulin,Stuart Hadfield,Tad Hogg,Ilya Safro
0+阅读 · 10月8日
相关资讯
ICML2019:Google和Facebook在推进哪些方向?
中国人工智能学会
5+阅读 · 2019年6月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
7+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
29+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
9+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
23+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
3+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
3+阅读 · 2017年8月6日
Top