The Mat\'ern covariance function is a popular choice for prediction in spatial statistics and uncertainty quantification literature. A key benefit of the Mat\'ern class is that it is possible to get precise control over the degree of mean-square differentiability of the random process. However, the Mat\'ern class possesses exponentially decaying tails, and thus may not be suitable for modeling polynomially decaying dependence. This problem can be remedied using polynomial covariances; however one loses control over the degree of mean-square differentiability of corresponding processes, in that random processes with existing polynomial covariances are either infinitely mean-square differentiable or nowhere mean-square differentiable at all. We construct a new family of covariance functions called the \emph{Confluent Hypergeometric} (CH) class using a scale mixture representation of the Mat\'ern class where one obtains the benefits of both Mat\'ern and polynomial covariances. The resultant covariance contains two parameters: one controls the degree of mean-square differentiability near the origin and the other controls the tail heaviness, independently of each other. Using a spectral representation, we derive theoretical properties of this new covariance including equivalent measures and asymptotic behavior of the maximum likelihood estimators under infill asymptotics. The improved theoretical properties of the CH class are verified via extensive simulations. Application using NASA's Orbiting Carbon Observatory-2 satellite data confirms the advantage of the CH class over the Mat\'ern class, especially in extrapolative settings.


翻译:Mat\'en Covention 函数是空间统计和不确定性量化文献中预测的一种流行选择。 Mat\' ern 类的一个关键好处是, 有可能对随机过程的平均值和方差程度进行精确控制。 但是, Mat\' ern 类具有指数衰变尾尾巴, 因此可能不适合模拟多元变的依赖性。 这个问题可以用多元共变变量来解决; 但是, 人们会失去对相应进程的平均值和方差度程度的控制, 因为与现有多元化共变的随机过程, 是有可能对任意过程的平均值差异程度进行精确控制。 但是, Mat\' ern 类拥有一个叫做 emph{Confluent 超正数度) 的新的变量, 以 Mat\' er 和多元变异性 等值 相对等值 。 在目前多元化的轨道变数中, 最接近的轨变数的变数是两个参数 。 最接近的轨变数的轨变数 。 最接近的轨变数的变数的变数的变数 。 DNA的变数的变数, 以另一种的变数的变数的变数法性 。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年9月30日
专知会员服务
41+阅读 · 2021年4月2日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
GeomCA: Geometric Evaluation of Data Representations
Arxiv
11+阅读 · 2021年5月26日
Arxiv
14+阅读 · 2020年12月17日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
相关论文
GeomCA: Geometric Evaluation of Data Representations
Arxiv
11+阅读 · 2021年5月26日
Arxiv
14+阅读 · 2020年12月17日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
4+阅读 · 2018年1月15日
Top
微信扫码咨询专知VIP会员