Magnetic resonance imaging (MRI) is highly sensitive for lesion detection in the breasts. Sequences obtained with different settings can capture the specific characteristics of lesions. Such multi-parameter MRI information has been shown to improve radiologist performance in lesion classification, as well as improving the performance of artificial intelligence models in various tasks. However, obtaining multi-parameter MRI makes the examination costly in both financial and time perspectives, and there may be safety concerns for special populations, thus making acquisition of the full spectrum of MRI sequences less durable. In this study, different than naive input fusion or feature concatenation from existing MRI parameters, a novel $\textbf{I}$ntegrated MRI $\textbf{M}$ulti-$\textbf{P}$arameter reinf$\textbf{O}$rcement fusion generato$\textbf{R}$ wi$\textbf{T}$h $\textbf{A}$tte$\textbf{NT}$ion Network (IMPORTANT-Net) is developed to generate missing parameters. First, the parameter reconstruction module is used to encode and restore the existing MRI parameters to obtain the corresponding latent representation information at any scale level. Then the multi-parameter fusion with attention module enables the interaction of the encoded information from different parameters through a set of algorithmic strategies, and applies different weights to the information through the attention mechanism after information fusion to obtain refined representation information. Finally, a reinforcement fusion scheme embedded in a $V^{-}$-shape generation module is used to combine the hierarchical representations to generate the missing MRI parameter. Results showed that our IMPORTANT-Net is capable of generating missing MRI parameters and outperforms comparable state-of-the-art networks. Our code is available at https://github.com/Netherlands-Cancer-Institute/MRI_IMPORTANT_NET.
翻译:磁共振成像( MRI) 对乳房的腐蚀检测非常敏感 。 以不同设置获得的序列可以捕捉损伤的具体特性 。 这种多参数 MRI 信息已经显示, 能够提高射线师在腐蚀分类方面的性能, 并改进人工智能模型在各种任务中的性能 。 然而, 获得多参数 MRI 使得检查在财务和时间两个角度上都花费了昂贵的费用, 特殊人群可能会担心安全, 从而降低对 MRI 序列全谱的获取的耐久性。 在本研究中, 不同于天真的输入聚合或特性调重力参数参数, 新的 $\ textbf{ MRI 信息显示 $\ textbf{ MRI, 正在通过 MITRIP- developal commission IMLismission IMLismissional IMLismissional IMLismissional dismations, 正在通过 IMTral- dismission IMLismission IMLismission 和 IMU IMD 演示, 显示, 正在通过现有的数据流- dismation- dismission 流数据流流数据流流流流流流流流流流流流流流流流流流流流流 显示到流数据显示到流流流流流流流流数据 显示到流数据到流流流流流流流数据显示到流数据到流流流流流流流数据 流流流流流流到流数据显示到流数据到流数据到流到流流流流数据到流流数据到流数据到流数据到流流数据到流到流流流流流流流流流流流流流流流流流到流到流数据到流到流到流数据到流数据到流数据到流数据到流数据到流数据到流数据到流到流数据到流流数据到流数据到代到流流流流流流流流流流流流流流流流流流流流数据到流数据到流数据到流数据到流流流流流流流流流流流流流流流流流流流流流流流流