Automatically writing stylized Chinese characters is an attractive yet challenging task due to its wide applicabilities. In this paper, we propose a novel framework named Style-Aware Variational Auto-Encoder (SA-VAE) to flexibly generate Chinese characters. Specifically, we propose to capture the different characteristics of a Chinese character by disentangling the latent features into content-related and style-related components. Considering of the complex shapes and structures, we incorporate the structure information as prior knowledge into our framework to guide the generation. Our framework shows a powerful one-shot/low-shot generalization ability by inferring the style component given a character with unseen style. To the best of our knowledge, this is the first attempt to learn to write new-style Chinese characters by observing only one or a few examples. Extensive experiments demonstrate its effectiveness in generating different stylized Chinese characters by fusing the feature vectors corresponding to different contents and styles, which is of significant importance in real-world applications.
翻译:自动书写标准化中国字符是一项具有吸引力但具有挑战性的任务, 因为它具有广泛的实用性。 在本文中, 我们提出一个名为 Style- Aware Variational Auto- Encoder (SA- VAE) 的新框架, 以灵活生成中国字符。 具体地说, 我们提议通过将潜在特征分离成内容相关和风格相关组成部分来捕捉中国字符的不同特征。 考虑到复杂的形状和结构, 我们将结构信息作为先前的知识纳入我们指导下一代的框架。 我们的框架通过推断具有隐形风格的字符的样式组件, 展示了强大的一拍/ 低镜头的概括能力。 根据我们的知识, 这是第一次尝试通过只观察一个或几个例子来学习写新风格的中国字符。 广泛的实验表明, 通过将与不同内容和风格相对应的特性矢量转换成不同的中国字符是有效的, 这在现实世界应用中非常重要的。