Solving the analytical inverse kinematics (IK) of redundant manipulators in real time is a difficult problem in robotics since its solution for a given target pose is not unique. Moreover, choosing the optimal IK solution with respect to application-specific demands helps to improve the robustness and to increase the success rate when driving the manipulator from its current configuration towards a desired pose. This is necessary, especially in high-dynamic tasks like catching objects in mid-flights. To compute a suitable target configuration in the joint space for a given target pose in the trajectory planning context, various factors such as travel time or manipulability must be considered. However, these factors increase the complexity of the overall problem which impedes real-time implementation. In this paper, a real-time framework to compute the analytical inverse kinematics of a redundant robot is presented. To this end, the analytical IK of the redundant manipulator is parameterized by so-called redundancy parameters, which are combined with a target pose to yield a unique IK solution. Most existing works in the literature either try to approximate the direct mapping from the desired pose of the manipulator to the solution of the IK or cluster the entire workspace to find IK solutions. In contrast, the proposed framework directly learns these redundancy parameters by using a neural network (NN) that provides the optimal IK solution with respect to the manipulability and the closeness to the current robot configuration. Monte Carlo simulations show the effectiveness of the proposed approach which is accurate and real-time capable ($\approx$ \SI{32}{\micro\second}) on the KUKA LBR iiwa 14 R820.
翻译:实时解析冗余操纵器的反动运动学( IK) 是机器人的难题, 因为它对特定目标的解决方案并不是独一无二的。 此外, 在应用特定需求方面选择最佳的 IK 解决方案有助于提高稳健性, 在将操纵器从当前配置推向理想配置时提高成功率。 这对于高动态任务( 如在飞行中抓取物体) 是必要的 。 在轨迹规划背景下, 要计算一个特定目标在联合空间中的适当目标配置, 就必须考虑旅行时间或可操作性等各种因素 。 然而, 这些因素增加了阻碍实时执行的总体问题的复杂性 。 在本文件中, 一个实时框架可以将一个冗余机机的机器人的反向运动性分析结果进行计算 。 为此, 冗余操纵器的分析 IK 以所谓的冗余参数作为参数的参数, 同时提出一个目标构成一个独特的 IK 解决方案。 文献中的大多数现有工作都试图将当前配置的准确度与当前配置或可操作性参数相近的 RK 。 使用IMK 的准确性模型来直接学习IMK 的 RE 。</s>