Extending rank-based inference to a multivariate setting such as multiple-output regression or MANOVA with unspecified d-dimensional error density has remained an open problem for more than half a century. None of the many solutions proposed so far is enjoying the combination of distribution-freeness and efficiency that makes rank-based inference a successful tool in the univariate setting. A concept of center-outward multivariate ranks and signs based on measure transportation ideas has been introduced recently. Center-outward ranks and signs are not only distribution-free but achieve in dimension d > 1 the (essential) maximal ancillarity property of traditional univariate ranks, hence carry all the "distribution-free information" available in the sample. We derive here the H\'ajek representation and asymptotic normality results required in the construction of center-outward rank tests for multiple-output regression and MANOVA. When based on appropriate spherical scores, these fully distribution-free tests achieve parametric efficiency in the corresponding models.


翻译:在半个多世纪以来,将基于等级的推论扩大到多变量设置,如多输出回归或多维误差密度未说明的 MANOVA,仍然是一个尚未解决的难题。到目前为止,提出的许多解决办法中没有一个具有分配自由度和效率的组合,使基于等级的推论成为单词环境中的成功工具。最近引入了以计量运输理念为基础的中向外多变量等级和标志的概念。中向外多变量和标志不仅没有分配,而且在尺寸d > 1(基本)达到传统的非象牙级的最大厌食性属性,因此在样本中包含所有“无分配信息”。我们在这里引出H\'ajek的表示和在构建多输出回归和中向外等级测试时所需的非典型的正常性结果。当根据适当的球级评分,这些完全无分配的测试在相应的模型中达到参数效率。

0
下载
关闭预览

相关内容

专知会员服务
121+阅读 · 2021年6月23日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Arxiv
0+阅读 · 2022年2月22日
Arxiv
0+阅读 · 2022年2月21日
Arxiv
0+阅读 · 2022年2月21日
Arxiv
0+阅读 · 2022年2月20日
Arxiv
0+阅读 · 2022年2月19日
Arxiv
0+阅读 · 2022年2月18日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员