Designing feasible and effective architectures under diverse computational budgets, incurred by different applications/devices, is essential for deploying deep models in real-world applications. To achieve this goal, existing methods often perform an independent architecture search process for each target budget, which is very inefficient yet unnecessary. More critically, these independent search processes cannot share their learned knowledge (i.e., the distribution of good architectures) with each other and thus often result in limited search results. To address these issues, we propose a Pareto-aware Neural Architecture Generator (PNAG) which only needs to be trained once and dynamically produces the Pareto optimal architecture for any given budget via inference. To train our PNAG, we learn the whole Pareto frontier by jointly finding multiple Pareto optimal architectures under diverse budgets. Such a joint search algorithm not only greatly reduces the overall search cost but also improves the search results. Extensive experiments on three hardware platforms (i.e., mobile device, CPU, and GPU) show the superiority of our method over existing methods.
翻译:在不同的计算预算下设计由不同应用/装置产生的可行和有效的结构,对于在现实世界应用中部署深层模型至关重要。为了实现这一目标,现有方法往往对每个目标预算实施独立的结构搜索程序,而这非常低效,但却没有必要。更为重要的是,这些独立搜索程序无法相互分享其学到的知识(即良好结构的分布),因此往往导致有限的搜索结果。为了解决这些问题,我们提议建立一个Pareto-aware神经结构发电机(PNAG),它只需要经过一次培训,并且动态地为任何特定预算生成Pareto最佳结构。为了培训我们的PNAG,我们通过在不同的预算下联合寻找多个Pareto最佳结构来学习整个Pareto前沿。这样的联合搜索算法不仅大大降低了总体搜索成本,而且改善了搜索结果。在三个硬件平台(即移动设备、CPU和GPU)上进行的广泛实验,显示了我们方法优于现有方法的优势。