Given an image $u_0$, the aim of minimising the Mumford-Shah functional is to find a decomposition of the image domain into sub-domains and a piecewise smooth approximation $u$ of $u_0$ such that $u$ varies smoothly within each sub-domain. Since the Mumford-Shah functional is highly non-smooth, regularizations such as the Ambrosio-Tortorelli approximation can be considered which is one of the most computationally efficient approximations of the Mumford-Shah functional for image segmentation. Our main result is the $\Gamma$-convergence of the Ambrosio-Tortorelli approximation of the Mumford-Shah functional for piecewise smooth approximations. This requires the introduction of an appropriate function space. As a consequence of our $\Gamma$-convergence result, we can infer the convergence of minimizers of the respective functionals.
翻译:鉴于图像值为$0,将Mumford-Shah功能最小化的目的是找到将图像域分解为子域的分解方式,并找到一个小巧的平滑近似值,即$0美元,这样每个子域内美元差异很顺利。由于Mumford-Shah功能高度不松散,因此可以考虑将Ambrosio-Tortorelli近似值等正规化,这是Mumford-Shah功能在图像分解方面的计算效率最高近似之一。我们的主要结果就是Mumford-Shah功能的Ambrosio-Tortorelli近似值在平滑近似值上达到$\Gamma$-convergeg。这需要引入一个合适的功能空间。由于我们的$Gamma$-convergence结果,我们可以推断各自功能最小化者的趋同。