Bayesian neural network (BNN) approximates the posterior distribution of model parameters and utilizes the posterior for prediction via Bayesian Model Averaging (BMA). The quality of the posterior approximation is critical for achieving accurate and robust predictions. It is known that flatness in the loss landscape is strongly associated with generalization performance, and it necessitates consideration to improve the quality of the posterior approximation. In this work, we empirically demonstrate that BNNs often struggle to capture the flatness. Moreover, we provide both experimental and theoretical evidence showing that BMA can be ineffective without ensuring flatness. To address this, we propose Sharpness-Aware Bayesian Model Averaging (SA-BMA), a novel optimizer that seeks flat posteriors by calculating divergence in the parameter space. SA-BMA aligns with the intrinsic nature of BNN and the generalized version of existing sharpness-aware optimizers for DNN. In addition, we suggest a Bayesian Transfer Learning scheme to efficiently leverage pre-trained DNN. We validate the efficacy of SA-BMA in enhancing generalization performance in few-shot classification and distribution shift by ensuring flat posterior.
翻译:暂无翻译