In proof-theoretic semantics, model-theoretic validity is replaced by proof-theoretic validity. Validity of formulae is defined inductively from a base giving the validity of atoms using inductive clauses derived from proof-theoretic rules. A key aim is to show completeness of the proof rules without any requirement for formal models. Establishing this for propositional intuitionistic logic (IPL) raises some technical and conceptual issues. We relate Sandqvist's (complete) base-extension semantics of intuitionistic propositional logic to categorical proof theory in presheaves, reconstructing categorically the soundness and completeness arguments, thereby demonstrating the naturality of Sandqvist's constructions. This naturality includes Sandqvist's treatment of disjunction that is based on its second-order or elimination-rule presentation. These constructions embody not just validity, but certain forms of objects of justifications. This analysis is taken a step further by showing that from the perspective of validity, Sandqvist's semantics can also be viewed as the natural disjunction in a category of sheaves.
翻译:在证据理论的语义学中,模型理论有效性被证据理论有效性所取代。公式的有效性是从一个基础来界定的,该基础使用根据证据理论规则产生的感性条款来赋予原子的有效性。一个关键目的是显示证据规则的完整性,而无需正式模型的任何要求。为理论直觉逻辑(IPL)建立这种框架会产生一些技术和概念问题。我们把直觉理论理论的(完全)基础扩展语义与理论理论的绝对证据理论联系起来,从而明确重建正确性和完整性论点,从而表明Sandqvist构造的自然性。这种自然性包括Sandqvist根据第二顺序或消除规则的表述对不相容的处理。这些构造不仅体现了有效性,而且体现了某些解释性对象的形式。通过从有效性的角度来看,Sandqvist的语义学也可以被视为Shanqvises的自然分离。