In proof-theoretic semantics, model-theoretic validity is replaced by proof-theoretic validity. Validity of formulae is defined inductively from a base giving the validity of atoms using inductive clauses derived from proof-theoretic rules. A key aim is to show completeness of the proof rules without any requirement for formal models. Establishing this for propositional intuitionistic logic (IPL) raises some technical and conceptual issues. We relate Sandqvist's (complete) base-extension semantics of intuitionistic propositional logic to categorical proof theory in presheaves, reconstructing categorically the soundness and completeness arguments, thereby demonstrating the naturality of Sandqvist's constructions. This naturality includes Sandqvist's treatment of disjunction that is based on its second-order or elimination-rule presentation. These constructions embody not just validity, but certain forms of objects of justifications. This analysis is taken a step further by showing that from the perspective of validity, Sandqvist's semantics can also be viewed as the natural disjunction in a category of sheaves.


翻译:在证据理论的语义学中,模型理论有效性被证据理论有效性所取代。公式的有效性是从一个基础来界定的,该基础使用根据证据理论规则产生的感性条款来赋予原子的有效性。一个关键目的是显示证据规则的完整性,而无需正式模型的任何要求。为理论直觉逻辑(IPL)建立这种框架会产生一些技术和概念问题。我们把直觉理论理论的(完全)基础扩展语义与理论理论的绝对证据理论联系起来,从而明确重建正确性和完整性论点,从而表明Sandqvist构造的自然性。这种自然性包括Sandqvist根据第二顺序或消除规则的表述对不相容的处理。这些构造不仅体现了有效性,而且体现了某些解释性对象的形式。通过从有效性的角度来看,Sandqvist的语义学也可以被视为Shanqvises的自然分离。

0
下载
关闭预览

相关内容

信息处理快报(IPL)致力于快速发表对信息处理的简短贡献。注重于原创研究文章,并且 这些文章着重于信息处理和计算方面,包括在计算机理论科学领域广为人知的工作以及高质量实验论文。 官网地址:http://dblp.uni-trier.de/db/journals/ipl/
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Transformers in Medical Image Analysis: A Review
Arxiv
39+阅读 · 2022年2月24日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员