We study approximation and localized polynomial frames on a bounded double hyperbolic or conic surface and the domain bounded by such a surface and hyperplanes. The main work follows the framework developed recently in \cite{X21} for homogeneous spaces that are assumed to contain highly localized kernels constructed via a family of orthogonal polynomials. The existence of such kernels will be established with the help of closed form formulas for the reproducing kernels. The main results provide a construction of semi-discrete localized tight frame in weighted $L^2$ norm and a characterization of best approximation by polynomials on our domains. Several intermediate results, including the Marcinkiewicz-Zygmund inequalities, positive cubature rules, Christoeffel functions, and Bernstein type inequalities, are shown to hold for doubling weights defined via the intrinsic distance on the domain.
翻译:我们研究一个捆绑的双双曲或二次曲线表面的近似和局部多圆形框架,以及这种表面和超高平面所覆盖的域。主要工作遵循了最近在\cite{X21}中为单一空间开发的框架,这些空间假定包含高度本地化的内核,这些内核通过一个正方形多圆形的大家庭建造。这些内核的存在将在再生产内核的封闭式公式的帮助下得以建立。主要结果提供了一种半分形局部紧框的构造,其加权值为$L2$,并定性了我们域域内多数值的最佳近似特征。一些中间结果,包括Marcinkiewicz-Zygmund的不平等、正性幼稚规则、Christoffel功能和Bernstein 型的不平等,都表明通过域内距离界定的重量将增加一倍。