Fairness is a fundamental requirement for trustworthy and human-centered Artificial Intelligence (AI) system. However, deep neural networks (DNNs) tend to make unfair predictions when the training data are collected from different sub-populations with different attributes (i.e. color, sex, age), leading to biased DNN predictions. We notice that such a troubling phenomenon is often caused by data itself, which means that bias information is encoded to the DNN along with the useful information (i.e. class information, semantic information). Therefore, we propose to use sketching to handle this phenomenon. Without losing the utility of data, we explore the image-to-sketching methods that can maintain useful semantic information for the target classification while filtering out the useless bias information. In addition, we design a fair loss to further improve the model fairness. We evaluate our method through extensive experiments on both general scene dataset and medical scene dataset. Our results show that the desired image-to-sketching method improves model fairness and achieves satisfactory results among state-of-the-art.
翻译:公平是可信和以人为本的人工智能(AI)系统的基本要求。然而,深神经网络(DNN)往往在从具有不同属性的不同亚群体(即肤色、性别、年龄)收集培训数据时作出不公平预测,导致有偏颇的DNN预测。我们注意到,这种令人不安的现象往往是由数据本身造成的,这意味着偏见信息与有用信息(如阶级信息、语义信息)一起编码到DNN,因此,我们提议使用草图处理这一现象。在不丧失数据效用的情况下,我们探索能够维持有用的分类分类语言信息、同时过滤无用的偏差信息的图像到拼写方法。此外,我们设计了公平损失以进一步改善模型的公平性。我们通过对一般场景数据集和医学场数据集的广泛实验来评估我们的方法。我们的结果显示,理想的图像到字首方法提高了模型的公正性,并在各邦之间取得了令人满意的结果。