This study assesses the efficiency of several popular machine learning approaches in the prediction of molecular binding affinity: CatBoost, Graph Attention Neural Network, and Bidirectional Encoder Representations from Transformers. The models were trained to predict binding affinities in terms of inhibition constants $K_i$ for pairs of proteins and small organic molecules. First two approaches use thoroughly selected physico-chemical features, while the third one is based on textual molecular representations - it is one of the first attempts to apply Transformer-based predictors for the binding affinity. We also discuss the visualization of attention layers within the Transformer approach in order to highlight the molecular sites responsible for interactions. All approaches are free from atomic spatial coordinates thus avoiding bias from known structures and being able to generalize for compounds with unknown conformations. The achieved accuracy for all suggested approaches prove their potential in high throughput screening.


翻译:本研究评估了几种流行的机器学习方法在预测分子结合性方面的效率:CatBoost、Gigpopotention Neal网络和来自变异体的双向编码器演示。这些模型经过培训,可以预测蛋白质和小型有机分子的抑制常数($_i美元)的结合性。首先,两种方法使用完全选定的物理化学特征,而第三个方法则以文本分子表示为基础——这是首次尝试对结合性应用基于变异器的预测器。我们还讨论了变异器方法内注意层的可视化,以突出负责相互作用的分子点。所有方法都不受原子空间坐标的干扰,从而避免了已知结构的偏差,能够对不明相近的化合物进行概括。所有建议方法的准确性都证明了其在高量筛选中的潜力。

0
下载
关闭预览

相关内容

Python编程基础,121页ppt
专知会员服务
49+阅读 · 2021年1月1日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
117+阅读 · 2019年12月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年2月16日
Arxiv
0+阅读 · 2021年2月15日
Arxiv
6+阅读 · 2019年12月30日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
VIP会员
相关VIP内容
Python编程基础,121页ppt
专知会员服务
49+阅读 · 2021年1月1日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
117+阅读 · 2019年12月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员