In this paper, we study bottleneck identification in networks via extracting minimax paths. Many real-world networks have stochastic weights for which full knowledge is not available in advance. Therefore, we model this task as a combinatorial semi-bandit problem to which we apply a combinatorial version of Thompson Sampling and establish an upper bound on the corresponding Bayesian regret. Due to the computational intractability of the problem, we then devise an alternative problem formulation which approximates the original objective. Finally, we experimentally evaluate the performance of Thompson Sampling with the approximate formulation on real-world directed and undirected networks.


翻译:在本文中,我们研究网络中的瓶颈识别,通过提取迷你麦克斯路径。许多现实世界网络具有不完全事先掌握知识的随机权重。因此,我们将这项任务作为组合半山地问题进行模拟,对此我们采用Thompson抽样的组合版,并在相应的巴伊西亚遗憾上设定一个上限。由于这一问题的计算性能不易,我们然后设计出一种与最初目标相近的替代问题配方。最后,我们实验性地评估Thompson抽样的性能与现实世界定向和非定向网络的近似配方。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月9日
Arxiv
0+阅读 · 2021年11月9日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
6+阅读 · 2018年4月24日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员