The Bayesian paradigm has the potential to solve core issues of deep neural networks such as poor calibration and data inefficiency. Alas, scaling Bayesian inference to large weight spaces often requires restrictive approximations. In this work, we show that it suffices to perform inference over a small subset of model weights in order to obtain accurate predictive posteriors. The other weights are kept as point estimates. This subnetwork inference framework enables us to use expressive, otherwise intractable, posterior approximations over such subsets. In particular, we implement subnetwork linearized Laplace as a simple, scalable Bayesian deep learning method: We first obtain a MAP estimate of all weights and then infer a full-covariance Gaussian posterior over a subnetwork using the linearized Laplace approximation. We propose a subnetwork selection strategy that aims to maximally preserve the model's predictive uncertainty. Empirically, our approach compares favorably to ensembles and less expressive posterior approximations over full networks.
翻译:Bayesian 范式有可能解决深神经网络的核心问题,如校准差和数据效率低等。 唉, 将Bayesian 推导到大重量空间往往需要限制性近似值。 在这项工作中, 我们显示它足以对一小组模型重量进行推论, 以便获得准确的预测后子体。 其他加权作为点估计保留。 这个子网络推理框架使我们能够使用表达性、 其它的棘手、 事后近似等子体。 特别是, 我们采用亚网络线性Laplace作为简单、 可伸缩的Bayesian 深层学习方法: 我们首先获得所有重量的MAP估计值, 然后用线性Laplace 近影法推导出一个子网络的完全一致的Gausian 后子网络。 我们提出一个子网络选择战略, 目的是最大限度地保护模型的预测不确定性。 具有想象性, 我们的方法比整个网络的成型和不那么明显的后端近似。