Deep neural network approximation of nonlinear operators, commonly referred to as DeepONet, has proven capable of approximating PDE backstepping designs in which a single Goursat-form PDE governs a single feedback gain function. In boundary control of coupled PDEs, coupled Goursat-form PDEs govern two or more gain kernels-a PDE structure unaddressed thus far with DeepONet. In this paper, we explore the subject of approximating systems of gain kernel PDEs for hyperbolic PDE plants by considering a simple counter-convecting $2\times 2$ coupled system in whose control a $2\times 2$ kernel PDE system in Goursat form arises. Engineering applications include oil drilling, the Saint-Venant model of shallow water waves, and the Aw-Rascle-Zhang model of stop-and-go instability in congested traffic flow. We establish the continuity of the mapping from a total of five plant PDE functional coefficients to the kernel PDE solutions, prove the existence of an arbitrarily close DeepONet approximation to the kernel PDEs, and ensure that the DeepONet-approximated gains guarantee stabilization when replacing the exact backstepping gain kernels. Taking into account anti-collocated boundary actuation and sensing, our $L^2$-Globally-exponentially stabilizing (GES) approximate gain kernel-based output feedback design implies the deep learning of both the controller's and the observer's gains. Moreover, the encoding of the output-feedback law into DeepONet ensures semi-global practical exponential stability (SG-PES). The DeepONet operator speeds up the computation of the controller gains by multiple orders of magnitude. Its theoretically proven stabilizing capability is demonstrated through simulations.
翻译:暂无翻译