We develop block preconditioners for solving the Stokes-Darcy equations, discretized by the Marker and Cell (MAC) finite difference method. The discretization leads to a mildly nonsymmetric double saddle-point linear system. We identify numerical properties and exploit the sparsity structure of the matrix, for the purpose of developing a fast preconditioned iterative solution procedure. The proposed preconditioners are based on approximations of two Schur complements that arise in decompositional relations associated with the double saddle-point matrix and its blocks. We analyze the eigenvalue distribution of the preconditioned matrices with respect to the physical parameters of the problem, and show that the eigenvalues are strongly clustered. Consequently, preconditioned GMRES appears to be relatively insensitive to the mesh size and the physical parameters involved. Numerical results validate our theoretical observations.
翻译:我们开发了解决斯托克斯-达西方程式的阻塞先决条件,由标记和细胞(MAC)有限差异法分解。离异导致一个轻度非对称的双马座点线性系统。我们为开发一个快速、先决条件的迭代解决方案程序,确定数字属性并利用矩阵的宽度结构。拟议先决条件基于两个Schur补充物的近似值,这两个补充物是在与双马座点矩阵及其区块相关的分解关系中产生的。我们分析了与问题物理参数有关的前提条件矩阵的双基因值分布,并表明双马座值高度集中。因此,先决条件的GMERES似乎相对不敏感于网形尺寸和所涉物理参数。数字结果证实了我们的理论观察。