One of the main problem in prediction theory of discrete-time second-order stationary processes $X(t)$ is to describe the asymptotic behavior of the best linear mean squared prediction error in predicting $X(0)$ given $ X(t),$ $-n\le t\le-1$, as $n$ goes to infinity. This behavior depends on the regularity (deterministic or nondeterministic) and on the dependence structure of the underlying observed process $X(t)$. In this paper we consider this problem both for deterministic and nondeterministic processes and survey some recent results. We focus on the less investigated case - deterministic processes. It turns out that for nondeterministic processes the asymptotic behavior of the prediction error is determined by the dependence structure of the observed process $X(t)$ and the differential properties of its spectral density $f$, while for deterministic processes it is determined by the geometric properties of the spectrum of $X(t)$ and singularities of its spectral density $f$.
翻译:离散的二级固定过程预测理论的主要问题之一 $X(t)是描述最佳线性平均平方预测错误在预测美元X(0)美元时的无症状行为,如果给X(t),$-n\le t\le-1美元,因为美元将到达无限值。这一行为取决于规律性(确定性或非确定性)和所观察过程的依附性结构$X(t)美元。在本文中,我们既考虑确定性和非确定性过程的问题,也研究最近的一些结果。我们侧重于调查较少的案例-确定性过程。结果显示,对于非确定性过程,预测错误的无症状行为是由所观察过程的依赖性结构确定的 $X(t)美元及其光谱密度的差别性。对于确定性过程,则由美元X(t)频谱和光谱密度的奇异性所决定。